• Title/Summary/Keyword: Dynamic characteristic test

Search Result 309, Processing Time 0.037 seconds

Design of Broad Band Piezoelectric Transducer Using Matching Layers (정합층을 이용한 광대역 압전 진동체 설계)

  • 조치영;서희선
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.749-754
    • /
    • 1996
  • In this paper, a design method of matching layers is presented for the sandwich type broad band underwater acoustic vibrators. The characteristic impedances of matching layers are determined to be matched to the characteristic impedance of head mass material. For the dynamic characteristic analysis of the sandwich type transducers, one dimensional FEM technique is also introduced. A test vibrator with the quarter wave matching layers has been designed to verify the proposed method. And the wide band characteristics of the input impedance and transmitting voltage response (TVR) are investigated.

  • PDF

Evaluation of the Dynamic Stiffness and Heavy-weight Floor Impact Sound Reduction by Composition of Resilient Materials (완충재 구성방법에 따른 동탄성계수 및 중량바닥충격음 저감특성 평가)

  • Kim, Kyoung-Woo;Jeong, Gab-Cheol;Sohn, Jang-Yeul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.247-254
    • /
    • 2008
  • Resilient materials are generally used for the floating floors to reduce the floor impact sound. Dynamic stiffness of resilient material, which has the most to do with the floor impact sound reduction. The resilient materials available in Korea include EPS(styrofoam), recycled urethane types, EVA(ethylene vinylacetate) foam rubber, foam PE(polyethylene). glass fiber & rock wool, recycled tire, foam polypropylene. compressed polyester, and other synthetic materials. In this study, we tested dynamic stiffness of resilient material and floor impact sound reduction characteristic to a lot of kinds of resilient materials. It was found that dynamic stiffness of multi-layered damping material could be estimated if know value of each layer that compose whole structure. And the test showed that the amount of the heavy-weight impact sound reduction appeared by being influenced from this dynamic stiffness of resilient material. The dynamic stiffness looked like between other resilient materials, a similar to the amount of the heavy-weight impact sound reduction was shown.

Soil Stress Analysis Using Discrete Element Method for Plate-Sinkage Tests (DEM 모델을 이용한 평판재하시험의 토양 수직응력 해석)

  • Jang, Gichan;Lee, Soojin;Lee, Kyu-Jin
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.230-237
    • /
    • 2015
  • Soil deformation on the off-load ground is significantly affected by soil conditions, such as soil type, water content, and etc. Thus, the soil characteristics should be estimated for predicting vehicle movements on the off-load conditions. The plate-sinkage test, a widely-used experimental test for predicting the wheel-soil interaction, provides the soil characteristic parameters from the relationship between soil stress and plate sinkage. In this study, soil stress under the plate-sinkage situation is calculated by the DEM (Discrete Element Method) model. We developed a virtual soil bin with DEM to obtain the vertical reaction forces under the plate pressing the soil surface. Also parametric studies to investigate effects of DEM model parameters, such as, particle density, Young's modulus, dynamic friction, rolling friction, and adhesion, on the characteristic soil parameters were performed.

Hot- Fire Injector Test for Determination of Combustion Stability Boundaries Using Model Chamber

  • Sohn Chae Hoon;Seol Woo-Seok;Shibanov Alexander A.;Pikalov Valery P.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1821-1832
    • /
    • 2005
  • This study realizes the conceptual method to predict combustion instability in actual full-scale combustion chamber of rocket engines by experimental tests with model (sub-scale) chamber. The model chamber was designed based on the methodologies proposed in the previous work regarding geometrical dimensions and operating conditions, and hot-fire test procedures were followed to obtain stability boundaries. From the experimental tests, two instability regions are presented by the parameters of combustion-chamber pressure and mixture (oxidizer/fuel) ratio, which are customary for combustor designers. It is found that instability characteristics in the chamber with the adopted jet injectors can be explained by the correlation between the characteristic burning or mixing time and the characteristic acoustic time: In each instability region, dynamic behaviors of flames are investigated to verify the hydrodynamically-derived characteristic lengths of the jet injectors. Large-amplitude pressure oscillation observed in upper instability region is found to be generated by lifted-off flames.

A Study Vibration Characteristic of Railway Freight Car's End Beam for Taebaek Line (태백선을 주행하는 화차 엔드빔의 진동특성에 관한 연구)

  • 함영삼;문경호;홍재성;이동형;서정원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.378-383
    • /
    • 2004
  • Bogie is the connection device between carbody and wheel. It is the core part that exert a important effect on the passenger safety and running safety. Bogie largely consist of bogie frame, suspension, brake, wheel set. Static and Dynamic load have acted on it complexly. So when the bogie is designed, finite element method, static load test, fatigue test running test should be considered. Some bogie frame of high speed railway freight car have the problem. It's end beam was cracked. The crack of the end beam have a bad effect on brake system. ROTEM co. made an improved end beam and applied one set to freight car. this report showed the vibration characteristic which was compared conventional bogie to improved bogie for running safety.

  • PDF

Dynamic Behavior Evaluation for Split PC sleeper using the Field Test (현장측정을 통한 기존 분기기용 목침목과 개량 분기기 부절침목의 동적거동 비교평가)

  • Um, Hwan-Ju;Lee, Chang-Hun;Eum, Ki-Young
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.746-752
    • /
    • 2006
  • The major objective of this study is to investigate the dynamic behavior evaluation of split PC sleepers for railway turnout by the field test. In railway engineering, a turnout is necessary to allow a vehicle to move from one track to another. So, turnout is required very complex railway technologies such as lolling stock, track. In reference to conventional line speed-up and improvement railway, accurate assembly of turnout affects travel ins qualify of turnout area and running safety. Because of heavy weight and a large volume of the long sleeper used to turnout and car limit, transport and the prerequisite for trouble-free transport of the factory pre-assembled major turnout components is achieved through division of long sleepers. The one of the advantages for using a split sleeper is to reduce the dynamic vibration according to the information of developed nations. Therefore, we investigate the characteristic of dynamic behaviors of split sleepers which are adopted for the first time to improve performance of turnout From the field test results of the split sleeper, it is evaluated that the modification of weight, material and stiffness compared with wood sleeper is very effective for the ballast safety. However, the decrease in vibration of split sleeper was not found out.

Vibration Characteristic Analysis of Bridge Simulator by Pulse ESPI System (Pulse ESPI System을 이용한 모형교량의 진동특성해석)

  • Choi JK;Kim K.S.;Jang H.S.;Kang M.G.;Kim S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1433-1437
    • /
    • 2005
  • Until now, strain gage technique and accelerometer for the diagnosis safety of constructions are used widely. However, the limits of these methods are revealed. But Electronic Speckle Pattern Interferometry(ESPI) that uses Pulse Laser is noncontact, whole-field, real-time measuring method also dull to disturbance and can achieve test result in a very short time. It has various strong point in spot application, swift establishment, and dynamic conduct analysis for the entire field of Laser illuminate. This author analyzed vibration characteristic of using the Pulse ESPI System, the diagnosis safety of bridges, to simplify the analysis of the dynamic conduct of a large construction.

  • PDF

A Study on Speed Control of Textiles Let off Using Hydraulic Solenoid Pilot Valve (유압 전자 파일럿밸브를 이용한 섬유송출기 속도제어에 관한 연구)

  • 이재구;김도태;김성동
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.225-230
    • /
    • 2002
  • Machine of textiles let off is equipment supplying constantly fabrics. Nowdays, as it is replaced band - brake type with hydraulic motor driven type, we looked into characteristic of hydraulic solenoid pilot direction valve(SPDV) for controlling acceleration performance of hydraulic motor. This study deals with controlling the initial speed of textiles let off machine. Finally, to control the initial speed of hydraulic motor, we controlled the adjustment screw of SPDV by a hand. Test which was carried out in the laboratory shows that initial speed of textiles let off could be improved by controlling adjustment screw of SPDV. Also, the results of experiment work were compared with dynamic characteristic of other on/off solenoid direction valve(SDV).

  • PDF

A New Assessment of Liquefaction Potential Based on the Dynamic Test (진동시험에 기초한 액상화 상세예측법 개발)

  • Kim, Soo-Il;Choi, Jae-Soon;Kang, Han-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.245-252
    • /
    • 2004
  • When some enormous earthquake hazards broke out in the neighboring Japan and Taiwan, many Korean earthquake engineers thought that seismic guidelines must be adjusted safely and economically to consider the moderate earthquake characteristics. In the present aseismic guideline for liquefaction potential assessment, a simplified method using SPT-N value and a detail method based on the dynamic lab-tests were introduced. However, it is said that these methods based on the equivalent stress concept to simplify an irregular earthquake are not reliable to simulate the kaleidoscopical characteristics of earthquake loading correctly. Especially, even though various data from the dynamic lab-test can be obtained, only two data, a maximum cyclic load and a number of cycle at an initial liquefaction are used to determine the soil resistance strength in the detailed method. In this study, a new assessment of liquefaction potential is proposed and verified. In the proposed assessment, various data from dynamic lab-tests are used to determine the unique soil resistance characteristic and a site specific analysis is introduced to analyze the irregular earthquake time history itself. Also, it is found that the proposed assessment is reasonable because it is devised to reflect the changeable soil behavior under dynamic loadings resulted from the generation and development of excess pore water pressure.

  • PDF

Launch Environment Test Results of Koreasat-3 (무궁화위성 3호 발사환경시험 결과분석)

  • Yang, Koon-Ho;Choi, Seong-Bong;Kim, Wone-Chul;Kim, Seong-Joong;HwangBo, Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1252-1258
    • /
    • 2000
  • Koreasat-3 was successfully launched by an Ariane IV launch vehicle on September 5, 1999. Although the primary purpose of the satellite is to replace Koreasat-l, it also can extend its communication service coverage over the Asia-Pacific region. A spacecraft is subjected to severe dynamic loads during launch period. To verify the safety of spacecraft under the launch environment, dynamic tests should be performed such as sine sweep, acoustic and separation shock tests. This paper presents the launch environment test results of Koreasat-3. A total of 188 acceleration responses was measured and compared with the design requirements of components and spacecraft. Dynamic characteristic change was also investigated by comparing between low-level pre/post vibration results. From the review of test results, it is concluded that Koreasat-3 was designed and manufactured with the margin of safety enough to survive the launch loads of Ariane IV.

  • PDF