• Title/Summary/Keyword: Dynamic capacity

Search Result 1,516, Processing Time 0.032 seconds

Shear Resistance of CIP Anchors under Dynamic Loading: Unreinforced Anchor (선설치앵커의 동적 전단하중에 대한 저항강도: 비보강 앵커)

  • Park, Yong Myung;Kang, Moon Ki;Kim, Dong Hyun;Lee, Jong Han;Kang, Choong Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • The Concrete Capacity Design(CCD) method has been used in the design of anchor since 2001 and Korean design code specify that concrete breakout capacity of CIP anchor under seismic load shall be taken as 75% of static capacity. In this study, an experimental study was performed to evaluate the concrete breakout capacity of unreinforced CIP anchors under dynamic shear force. For the purpose, three static and dynamic shear-loading tests were conducted using 20mm diameter anchors, respectively. The edge distance of 120mm was considered in the tests. In the dynamic tests, 15 cycles pulsating load with 1Hz speed was applied and the magnitude of loading step was increased until concrete breakout failure occurs. From the tests, the concrete breakout capacity under dynamic shear loading showed nearly same capacity by static loading.

Development of seismic collapse capacity spectra for structures with deteriorating properties

  • Shu, Zhan;Li, Shuang;Gao, Mengmeng;Yuan, Zhenwei
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.297-307
    • /
    • 2017
  • Evaluation on the sidesway seismic collapse capacity of the widely used low- and medium-height structures is meaningful. These structures with such type of collapse are recognized that behave as inelastic deteriorating single-degree-of-freedom (SDOF) systems. To incorporate the deteriorating effects, the hysteretic loop of the nonlinear SDOF structural model is represented by a tri-linear force-displacement relationship. The concept of collapse capacity spectra are adopted, where the incremental dynamic analysis is performed to check the collapse point and a normalized ground motion intensity measure corresponding to the collapse point is used to define the collapse capacity. With a large amount of earthquake ground motions, a systematic parameter study, i.e., the influences of various ground motion parameters (site condition, magnitude, distance to rupture, and near-fault effect) as well as various structural parameters (damping, ductility, degrading stiffness, pinching behavior, accumulated damage, unloading stiffness, and P-delta effect) on the structural collapse capacity has been performed. The analytical formulas for the collapse capacity spectra considering above influences have been presented so as to quickly predict the structural collapse capacities.

Capacity Improvement with Dynamic Channel Assignment and Reuse Partitioning in Cellular Systems

  • Chen Steven Li;Chong Peter Han Joo
    • Journal of Communications and Networks
    • /
    • v.8 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • In cellular mobile communications, how to achieve optimum system capacity with limited frequency spectrum is one of the main research issues. Many dynamic channel assignment (DCA) schemes have been proposed and studied to allocate the channels more efficiently, thus, the capacity of cellular systems is improved. Reuse partitioning (RP) is another technique to achieve higher capacity by reducing the overall reuse distance. In this paper, we present a network-based DCA scheme with the implementation of RP technique, namely dynamic reuse partitioning with interference information (DRP-WI). The scheme aims to minimize the effect of assigned channels on the availability of channels for use in the interfering cells and to reduce their overall reuse distances. The performance of DRP-WI is measured in terms of blocking probability and system capacity. Simulation results have confirmed the effectiveness of DRP-WI scheme. Under both uniform and non-uniform traffic distributions, DRP-WI exhibits outstanding performance in improving the system capacity. It can provide about 100% capacity improvement as compared to conventional fixed channel assignment scheme with 70 system channels.

A Case Study on the Effect of Damaged Expansion Joint for Safety Assessment of Highway Bridges

  • Kim, Kwang-Il;Chai, Won-Kyu;Lee, Myeong-Gu;Son, Young-Hyun
    • International Journal of Safety
    • /
    • v.9 no.2
    • /
    • pp.16-21
    • /
    • 2010
  • In this study, the variations of transformed impact factors and load carrying capacity of highway bridges measured from the state of expansion joint are evaluated. the field loading tests were performed on the highway bridge with damaged expansion joint to investigate the variation of the load carrying capacity. From the field loading tests in case that damaged expansion joint exist or do not exist, the static displacements and dynamic displacements were measured, and TIF were calculated, respectively. dynamic test is performed in order to estimate dynamic displacement and TIF according to the level of damage of expansion joint. From the results of TIF, the load carrying capacity of highway bridges with damaged expansion joint were estimated.

Experiment of single screw piles under inclined cyclic pulling loading

  • Dong, Tian Wen;Zheng, Ying Ren
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.801-810
    • /
    • 2015
  • The ultimate pullout capacity under inclined dynamic loading is an important measure of the destruction degree of vertical screw piles (anchors) under dynamic actions. Based on the static and dynamic tests on two kinds of model screw piles, the ultimate bearing capacity was researched considering different distance-width ratio of blade (D/W) and preloading ratio. The results compared well with other experimental data available in the literature. This research reveals that D/W might determine the failure model of the piles (anchors), for example D/W = 3.14 or 5; a critical dynamic-static loading ratio (DSLR) existed in the experiments. The critical DSLR was reached under the conditions of 40%~60% preloading (D/W = 3.14) or 20%~40% preloading (D/W = 5), respectively.

Bearing Capacity Characteristics of Auger-Drilled Piling (매입말뚝 공법의 지지력 특성에 관한 연구)

  • Gwak, Soo-Jeong;Seo, In-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.3-10
    • /
    • 2004
  • This study set out to analyze the appropriateness of the piling distance installed in weathered layer in the auger-drilled piling method and the reasonable piling distance for the unfinished parts. For that purpose, an investigation was done of the reliability of the dynamic test, the appropriateness of the old bearing capacity formula for the auger-drilled piling, and the quality control measures for obtaining the required bearing capacity.

  • PDF

An Empirical Study on the Effect of Organic Structure and Learning Culture on Dynamic Competence and Corporate Performance (기업조직의 유기성과 학습문화가 동적역량과 기업성과에 미치는 영향에 관한 실증연구)

  • Jung, Doo-Sig
    • Journal of Digital Convergence
    • /
    • v.17 no.2
    • /
    • pp.47-57
    • /
    • 2019
  • This study analyze whether the organizational learning culture affects the firm's dynamic capacity and whether the dynamic capacity mediates the relationship between organizational learning culture and management performance. Respectively. First, "The more organizational structure is organic, the higher the integrated relocation capacity and learning capacity. Organizations with organic organizational structures were found to have the ability to successfully adapt to external changes because there is a practice that is not tied to formal processing or procedures. Second, it can be seen that there is a positive (+) influence on the relocation capacity among the dynamic competence of the learning culture of the corporate organization. Third, both sub-factors of dynamic competence have positive (+) influence on business performance. Also, there was no mediating effect of dynamic competence related to learning culture.

Analytical Study on the Appropriateness of Design Formula and Possibility of Improving Bearing Capacity of Bored Pile (매입말뚝의 설계식 적정성 및 지지력 상향 가능성 분석 연구)

  • Park, Jong-Bae;Lee, Bum-Sik;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.6 no.3
    • /
    • pp.139-145
    • /
    • 2015
  • To improve the pile design efficiency(design bearing capacity/the strength of materials) from 70 percent(160tonf) to 80 percent(190tonf), this paper analysed the existing pile loading test data and performed the precise dynamic loading test and Bi-directional loading test for the first time in Korea. Analysis result of the existing dynamic loading test data by Davisson method showed that bearing capacity of piles penetrated at weathered rock stratum(N=50/15) exceeded 190tonf. But the analysis result by CAPWAP method showed that piles less than the target bearing capacity were 40% due to the lack of impact energy. To get the target bearing capacity from the dynamic loading test, using the hammer over 6tonf to trigger the enough impact energy is necessary. Allowable bearing capacty of Bi-directional static loading test by Davisson method was 260.0~335tonf(ave. 285.3tonf) and exceeded overwhelmingly the target capacity. And this exceeded the bearing capacity of precise dynamic loading test(ave. 202.3tonf) performed on the same piles over 40%. The difference between the capacity of Bi-directional loading test and dynamic loading test was caused by the insufficient impact energy during dynamic loading test and increase by interlocking effect by near piles during Bi-directional static loading test.

Capacity Expansion Planning Model of Private Distribution Center Under Usability of Public Distribution Center (영업용 물류센터 사용하에서 자가 물류센터의 크기 확장계획 모형)

  • Chang, Suk-Hwa
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.1
    • /
    • pp.71-79
    • /
    • 2010
  • This paper addresses capacity expansion planning model of distribution center under usability of public distribution center. For discrete and finite time periods, demands for distribution center increase dynamically. The capacity expansion planning is to determine the capacity expansion size of private distribution center and usage size of public distribution center for each period through the time periods. The capacity expansion of private distribution center or lease usage of public distribution center must be done to satisfy demand increase for distribution center. The costs are capacity expansion cost and excess capacity holding cost of private distribution center, lease usage cost of public distribution center. Capacity expansion planning of minimizing the total costs is mathematically modelled. The properties of optimal solution are characterized and a dynamic programming algorithm is developed. A numerical example is shown to explain the problem.

Evaluation of Allowable Bearing Capacity of 600 mm Diameter Preboring PHC Piles Using Dynamic Load Test (직경 600mm PHC 매입말뚝의 동재하시험을 통한 허용 지지력 평가)

  • Woo, Gyu-Seong;Park, Jong-Bae;Seo, Mi-Jeong;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.11
    • /
    • pp.61-72
    • /
    • 2016
  • For the construction of high-rise structures and the optimized foundation design, the use of the large-diameter PHC pile has increased. Especially, the use of the 600 mm diameter PHC pile has significantly increased. In this study, for the evaluation of the suitability of the current design practice, the 46 dynamic pile load tests, which were carried out in the 600 mm diameter preboring PHC pile, are analyzed. The end bearing capacity is obtained from the end of initial driving test and the shaft capacity is estimated from the restrike test. The allowable capacities estimated by the dynamic load test are compared with those based on the current design practice. The analyses show that the allowable end bearing capacity evaluated by the dynamic pile load test is greater than the design practice in most piles. The allowable shaft capacity, however, is smaller than the design practice in many piles. The higher end bearing capacity and the smaller shaft capacity may result from the improvement of the drilling equipment and the increase in the penetration depth. Thus, the portion of the end bearing capacity in the total capacity increases.