• 제목/요약/키워드: Dynamic calibration

검색결과 234건 처리시간 0.025초

The Construction of Initial Analytical Models Structural Health Monitoring of a Masonry Structure

  • Kim, Seonwoong;Kim, Ji Young;Hwang, In Hwan
    • 국제초고층학회논문집
    • /
    • 제4권3호
    • /
    • pp.191-198
    • /
    • 2015
  • It is important to accurately predict structural responses to external excitations such as typhoons and earthquakes when designing structures for serviceability. One of the key procedures to predict reliable vibration responses is to evaluate accurate structural dynamic properties using finite element (FE) models, which properly represent the realistic behavior of buildings. In the case of historic masonry buildings, structural damage could also be caused by ambient vibrations or impacts. Therefore, the preservation plans of historic buildings for low-level vibrations or impacts should be provided by analyzing structural damages within serviceability levels. For this purpose, it is required to provide FE model construction and response analysis methods verified with field measurement data. In this research, long-term field measurement was performed for a cathedral and its dynamic properties were evaluated using measured data. Then, the model was calibrated based on the measured dynamic properties and an overall construction method for the masonry cathedral was proposed. Using the measured accelerations, the vibrations of the belfry were analyzed using the calibrated FE model and finally, the FE model for the cathedral was verified by comparing the measured accelerations with the modeled results.

천리안위성 2A호 지구정지궤도위성 궤도결정 (Orbit Determination of GEO-KOMPSAT-2A Geostationary Satellite)

  • 김용래;이상철;김정래
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권2호
    • /
    • pp.199-206
    • /
    • 2024
  • The GEO-KOMPSAT-2A (GK2A) satellite, which was launched in December 2018, carries weather observation payloads and uses the image navigation and registration system to calibrate the observation images. The calibration system requires accurate orbit prediction data and depends on the accuracy of the orbit determination accuracy. In order to find a possible way to improve the current orbit determination accuracy of the GK2A flight dynamic subsystem module, orbit determination software was developed to independently evaluate the orbit determination accuracy. A comprehensive satellite dynamic model is applied for a batch-type least squares filter. When determining the orbit, thrust firing during station-keeping maneuvers and wheel-off loading maneuvers is taken into account. One month of GK2A ranging data were processed to estimate the satellite position on a daily basis. The orbit determination error was evaluated by comparing estimates during overlapping estimation intervals.

Dextrous sensor hand for the intelligent assisting system - IAS

  • Hashimoto, Hideki;Buss, Martin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.124-129
    • /
    • 1992
  • The goal of the proposed Intelligent Assisting System - IAS is to assist human operators in an intelligent way, while leaving decision and goal planning instances for the human. To realize the IAS the very important issue of manipulation skill identification and analysis has to be solved, which then is stored in a Skill Data Base. Using this data base the IAS is able to perform complex manipulations on the motion control level and to assist the human operator flexibly. We propose a model for manipulation skill based on the dynamics of the grip transformation matrix, which describes the dynamic transformation between object space and finger joint space. Interaction with a virtual world simulator allows the calculation and feedback of appropriate forces through controlled actuators of the sensor glove with 10 degrees-of-freedom. To solve the sensor glove calibration problem, we learn the nonlinear calibration mapping by an artificial neural network(ANN). In this paper we also describe the experimental system setup of the skill acquisition and transfer system as a first approach to the IAS. Some simple manipulation examples and simulation results show the feasibility of the proposed manipulation skill model.

  • PDF

Mach-Zehnder 광섬유 간섭계를 이용한 압전형 진동발생기의 동특성 조사 (The Measurements of Vibration Displacement of the Piezoelectric Exciter Using Mach-Zehnder Optical Fiber Interferometer)

  • 조승일;김성부;이종규;이용봉;이두희
    • 한국소음진동공학회논문집
    • /
    • 제16권10호
    • /
    • pp.1044-1049
    • /
    • 2006
  • The vibration exciter with the accurate calibration requires a low distortion along a single axis over a wide range of frequency. The fabricated piezoelectric exciter was composed of a base, piezoelectric element(Venitron PZT 5A), electrode and seismic mass. Its performance characteristics is evaluated the Mach-Zehnder optical fiber interferometer. The phase of the optical wave passing through the optical fiber around the piezoelectric element was related the vibrational amplitude with a change of the applied sinusoidal voltage on the piezoelectric element. The dynamic characteristics of vibration exciter can be obtained by measuring the vibrational amplitude with a sinusoidal applied voltage on the piezoelectric element. The sensitivity of the fabricated piezoelectric exciter had a 0.4 nm/V which was uniform up to 20 kHz.

연조직 변형에 의한 해부학적 지표와 피부마커의 변위 상관성을 이용한 동작분석 오차 보정 방법의 적용 (Application of Compensation Method of Motion Analysis Error Using Displacement Dependency between Anatomical Landmarks and Skin Markers Due to Soft Tissue Artifact)

  • 류태범
    • 산업경영시스템학회지
    • /
    • 제35권4호
    • /
    • pp.24-32
    • /
    • 2012
  • Of many approaches to reduce motion analysis errors, the compensation method of anatomical landmarks estimates the position of anatomical landmarks during motion. The method models the position of anatomical landmarks with joint angle or skin marker displacement using the data of the so-called dynamic calibration in which anatomical landmark positions are calibrated in ad hoc motions. Then the anatomical landmark positions are calibrated in target motions using the model. This study applies the compensation methods with joint angle and skin marker displacement to three lower extremity motions (walking, sit-to-stand/stand-to-sit, and step up/down) in ten healthy males and compares their performance. To compare the performance of the methods, two sets of kinematic variables were calculated using different two marker clusters, and the difference was obtained. Results showed that the compensation method with skin marker displacement had less differences by 30~60% compared to without compensation. And, it had significantly less difference in some kinematic variables (7 of 18) by 25~40% compared to the compensation method with joint angle. This study supports that compensation with skin marker displacement reduced the motion analysis STA errors more reliably than with joint angle in lower extremity motion analysis.

Simplified beam model of high burnup spent fuel rod under lateral load considering pellet-clad interfacial bonding influence

  • Lee, Sanghoon;Kim, Seyeon
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1333-1344
    • /
    • 2019
  • An integrated approach of model simplification for high burnup spent nuclear fuel is proposed based on material calibration using optimization. The spent fuel rods are simplified into a beam with a homogenous isotropic material. The proposed approach of model simplification is applied to fuel rods with two kinds of interfacial configurations between the fuel pellets and cladding. The differences among the generated models and the effects of interfacial bonding efficiency are discussed. The strategy of model simplification adopted in this work is to force the simplified beam model of spent fuel rods to possess the same compliance and failure characteristics under critical loads as those that result in the failure of detailed fuel rod models. It is envisioned that the simplified model would enable the assessment of fuel rod failure through an assembly-level analysis, without resorting to a refined model for an individual fuel rod. The effective material properties of the simplified beam model were successfully identified using the integrated optimization process. The feasibility of using the developed simplified beam models in dynamic impact simulations for a horizontal drop condition is examined, and discussions are provided.

The reason of cracking in bottom gallery of SefidRud Buttress Dam and earthquake and post earthquake performance

  • Mirzabozorg, Hasan;Ghaemian, Mohsen;Roohezamin, Amirhossein
    • Structural Monitoring and Maintenance
    • /
    • 제6권2호
    • /
    • pp.103-124
    • /
    • 2019
  • Present study concerns the safety evaluation of SefidRud dam's block No. 18 regarding probable crack propagation in the foundation gallery under a MCE record. Accordingly, a 3D finite element model of the block in companion with the reservoir and the foundation is modeled. All the associated thermal and structural parameters are derived via calibration with the records of thermometers and pendulums installed inside the dam body. The origination of the cracks and their whereabouts are determined by primary thermal and static analyses and through a linear dynamic analysis the potential failure zone and their extent and level are studied. The foundation gallery is the most probable zone among the other intensive tensile stress area to compromise the dam stability. Therefore, the nonlinear analysis of this risky region is inevitable. The results depict the permissible expansion of the cracks inside the gallery even under another future earthquake in MCE level. As a consequence, the general dam performance is assessed safe in spite of the seepage flow rate growth from the gallery fractures.

RDS(Robotic Drilling System)용 TCP 정밀계측을 위한 iGPS 3D Probe 개발에 관한 연구 (A Study on the Development of iGPS 3D Probe for RDS for the Precision Measurement of TCP)

  • 김태화;문성호;강성호;권순재
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.130-138
    • /
    • 2012
  • There are increasing demands from the industry for intelligent robot-calibration solutions, which can be tightly integrated to the manufacturing process. A proposed solution can simplify conventional robot-calibration and teaching methods without tedious procedures and lengthy training time. iGPS(Indoor GPS) system is a laser based real-time dynamic tracking/measurement system. The key element is acquiring and reporting three-dimensional(3D) information, which can be accomplished as an integrated system or as manual contact based measurements by a user. A 3D probe is introduced as the user holds the probe in his hand and moves the probe tip over the object. The X, Y, and Z coordinates of the probe tip are measured in real-time with high accuracy. In this paper, a new approach of robot-calibration and teaching system is introduced by implementing a 3D measurement system for measuring and tracking an object with motions in up to six degrees of freedom. The general concept and kinematics of the metrology system as well as the derivations of an error budget for the general device are described. Several experimental results of geometry and its related error identification for an easy compensation / teaching method on an industrial robot will also be included.

분석툴을 이용한 천리안2A 기상탑재체 복사 보정 파라미터 검증 (Verification of GEO-KOMPSAT-2A AMI Radiometric Calibration Parameters Using an Evaluation Tool)

  • 진경욱;박진형
    • 대한원격탐사학회지
    • /
    • 제36권6_1호
    • /
    • pp.1323-1337
    • /
    • 2020
  • 천리안2A호 AMI(Advanced Meteorological Imager) 복사 보정에 대한 검증은 탑재체의 기능 및 성능 점검뿐만 아니라, 탑재체 자료의 품질을 결정 짓는 중요한 요소이다. AMI 탑재체는 여섯 개의 가시 및 근적외 채널과 10개의 열적외 채널로 구성되어 있다. 가시/근적외 채널의 복사 성능을 대표하는 핵심적인 파라미터로는 SNR(Signal-to-Noise Ratio), 열적외채널의 경우는 NEdT(Noise Equivalent delta Temperature)를 들 수 있다. 다이나믹 레인지와 검출기의 반응도와 관련된 Gain 값 또한 복사 보정 성능과 관련된 중요한 파라미터이다. AMI 탑재체의 주요 복사 보정 성능 검증을 위해, 실시간 AMI자료 처리 시스템과는 별도의 오프라인 복사 성능 분석 툴을 개발하였다. 개발된 분석 툴을 이용하여 천리안2A호 발사 후 궤도상 시험 기간 동안 검증 작업을 수행하였다. 분석 툴을 통한 계산 결과는 탑재체 개발업체인 HARRIS사의 분석 값과 비교 검증하였다. AMI 복사 성능 검증 작업은 총 세차례로 나누어 AMI탑재체 양쪽 면인 Side1과 Side2에 대해 이루어졌다. 복사 성능 검증 결과 주요 복사 보정 파라미터들의 성능은 요구조건 값들을 크게 상회하는 우수한 성능을 보여 주었으며, AMI 복사 성능 분석 툴의 유효성이 입증되었다.

Finite element model calibration of a steel railway bridge via ambient vibration test

  • Arisoy, Bengi;Erol, Osman
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.327-335
    • /
    • 2018
  • This paper presents structural assessment of a steel railway bridge for current condition using modal parameter to upgrade finite element modeling in order to gather accurate result. An adequate monitoring, such as acceleration, displacement, strain monitoring, is important tool to understand behavior and to assess structural performance of the structure under surround vibration by means of the dynamic analysis. Evaluation of conditions of an existing steel railway bridge consist of 4 decks, three of them are 14 m, one of them is 9.7 m, was performed with a numerical analysis and a series of dynamic tests. Numerical analysis was performed implementing finite element model of the bridge using SAP2000 software. Dynamic tests were performed by collecting acceleration data caused by surrounding vibrations and dynamic analysis is performed by Operational Modal Analysis (OMA) using collected acceleration data. The acceleration response of the steel bridge is assumed to be governing response quantity for structural assessment and provide valuable information about the current statute of the structure. Modal identification determined based on response of the structure play significant role for upgrading finite element model of the structure and helping structural evaluation. Numerical and experimental dynamic properties are compared and finite element model of the bridge is updated by changing of material properties to reduce the differences between the results. In this paper, an existing steel railway bridge with four spans is evaluated by finite element model improved using operational modal analysis. Structural analysis performed for the bridge both for original and calibrated models, and results are compared. It is demonstrated that differences in natural frequencies are reduced between 0.2% to 5% by calibrating finite element modeling and stiffness properties.