• 제목/요약/키워드: Dynamic boundary condition

검색결과 350건 처리시간 0.026초

양단자유 경계조건을 가진 매설관의 동적거동에서 진동안전 기준에 관한 연구 (A Study of the Vibration Safety Criterion on the Dynamic Behavior of Buried Pipeline with the Free Ends)

  • 이병길;정진호;장봉현;안명석
    • 화약ㆍ발파
    • /
    • 제22권3호
    • /
    • pp.13-26
    • /
    • 2004
  • 본 연구는 건설현장에서 매설관의 경계조건에 따른 동적 거동에 대한 진동안전기준에 관한 연구이다. 경계조건은 양단자유이며, 축방향 및 축직각방향에 대한 거동을 조사하였다. 매설관은 탄성기초 위에 놓인 보요소로 모형화하였고, 지진파는 정현파 형태의 지반 변위로 적용하였다. 매설관의 고유진동수와 모드 형태 그리고 매개변수의 영향을 조사하기 위해 자유진동에 대한 해석을 수행하였다. 그리고 지진파에 대한 거동을 조사하기 위해 자유진동 해석을 통해 얻어진 고유진동수와 모드 형태를 이용하여 진동에 대한 수식을 유도하였으며, 진동안전기준치 5 cm/sec에 안전하였고 양단자유의 매설관에 대한 자유진동 및 강제진동시의 시간-변위곡선을 나타내기 위한 전산프로그램을 완성하였다.

비대칭 박벽보에 대한 엄밀한 동적 강도행렬의 유도 (Derivation of Exact Dynamic Stiffness Matrix for Non-Symmetric Thin-walled Straight Beams)

  • 김문영;윤희택
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.369-376
    • /
    • 2000
  • For the general loading condition and boundary condition, it is very difficult to obtain closed-form solutions for buckling loads and natural frequencies of thin-walled structures because its behaviour is very complex due to the coupling effect of bending and torsional behaviour. Consequently most of previous finite element formulations introduced approximate displacement fields using shape functions as Hermitian polynomials, isoparametric interpoation function, and so on. The purpose of this study is to calculate the exact displacement field of a thin-walled straight beam element with the non-symmetric cross section and present a consistent derivation of the exact dynamic stiffness matrix. An exact dynamic element stiffness matrix is established from Vlasov's coupled differential equations for a uniform beam element of non-symmetric thin-walled cross section. This numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. The natural frequencies are evaluated for the non-symmetric thin-walled straight beam structure, and the results are compared with available solutions in order to verify validity and accuracy of the proposed procedures.

  • PDF

Forced vibration of surface foundation on multi-layered half space

  • Chen, Lin
    • Structural Engineering and Mechanics
    • /
    • 제54권4호
    • /
    • pp.623-648
    • /
    • 2015
  • A numerical approach is presented for the analysis of the forced vibration of a rigid surface foundation with arbitrary shape. In the analysis, the foundation is discretized into a number of sub squaree-lements. The dynamic response within each sub-element is described by the Green's function, which is obtained by the Fourier-Bessel transform and Precise Integration Method (PIM). Incorporating the displacement boundary condition and force equilibrium of the foundation, it obtains a system of linear algebraic equation in terms of the contact forces within each sub-element. Solving the equation leads to the desired dynamic impedance functions of the foundation. Numerical results are obtained for foundation not only with simple geometrical configurations, such as rectangular and circular foundation, but also the case of irregularly shaped foundation. Several comparisons between the proposed approach and other methods are made. Very good agreement is reached. Also, parametric studies are carried out on the dynamic response of foundation. Addressed in this study are the effects of Poisson's ratio, material damping and contact condition of soil-foundation interface. Several conclusions are drawn the significance of the factors.

스월 인젝터의 동특성에 대한 수치해석 연구 (Dynamic Characteristics Simulation for a Simplex Swirl Injector)

  • 박홍복
    • 한국항공우주학회지
    • /
    • 제34권9호
    • /
    • pp.67-75
    • /
    • 2006
  • 스월 인젝터의 비선형 동적특성을 모사할 수 있는 수치해석 모델을 개발하여 인젝터내의 정적/동적 특성을 분석하였다. Boundary Element Methods (BEMs)을 적용한 수치모델은 유체 경계면 산출에 매우 유리한 장점이 있어 표면의 불안정성 해석에 유용하게 적용되어 왔다. 이전의 연구 결과에서는 스월효과를 고려할 수 있도록 확장된 수치모델을 이용하여 인젝터의 형상을 고려한 정적특성을 보여주었다. 본 논문에서는 유입 흐름에 교란이 발생했을 때 인젝터의 각 구성요소에서의 동적응답을 분석하였고, 이론적 결과와 비교하여 수치모델에 대한 타당성을 검증하였다. 본 수치해석 결과는 입력류에서의 교란이 각 인젝터 구성품을 지나면서 감쇠/증폭되고 위상차를 만들게 되는 과정을 잘 모사하고 있다. 개발된 수치모델은 인젝터의 다양한 설계변수들이 유동특성에 미치는 효과 분석과 이론적 모델로는 예측이 어려운 비선형 영역에서의 동적 응답특성 분석에 유용하게 적용될 수 있을 것이다.

Newton's Method to Determine Fourier Coefficients and Wave Properties for Deep Water Waves

  • JangRyong Shin
    • 한국해양공학회지
    • /
    • 제37권2호
    • /
    • pp.49-57
    • /
    • 2023
  • Since Chappelear developed a Fourier approximation method, considerable research efforts have been made. On the other hand, Fourier approximations are unsuitable for deep water waves. The purpose of this study is to provide a Fourier approximation suitable even for deep water waves and a numerical method to determine the Fourier coefficients and the wave properties. In addition, the convergence of the solution was tested in terms of its order. This paper presents a velocity potential satisfying the Laplace equation and the bottom boundary condition (BBC) with a truncated Fourier series. Two wave profiles were derived by applying the potential to the kinematic free surface boundary condition (KFSBC) and the dynamic free surface boundary condition (DFSBC). A set of nonlinear equations was represented to determine the Fourier coefficients, which were derived so that the two profiles are identical at specified phases. The set of equations was solved using Newton's method. This study proved that there is a limit to the series order, i.e., the maximum series order is N=12, and that there is a height limitation of this method which is slightly lower than the Michell theory. The reason why the other Fourier approximations are not suitable for deep water waves is discussed.

콘크리트 매설관의 동적응답해석에 대한 곡선적합식의 개발 (Development of Curve Fitted Equation about Dynamic Response Analysis of a Buried Concrete Pipelines)

  • 정진호;김성반;안명석
    • 화약ㆍ발파
    • /
    • 제24권1호
    • /
    • pp.9-19
    • /
    • 2006
  • 본 연구는 일단고정-일단자유 단부 경계조건을 가진 콘크리트 매설관의 동적응답을 연구하고, 내진성능 평가 시 실용적이고 실무적용성이 높은 곡선 적합식의 개발을 목적으로 한다. 매설관의 동적응답을 연구하기 위해 기존 연구에서 개발된 수치해석 프로그램을 사용하여 일단고정-일단자유 단부 경계조건에 대한 최대변형 률 발생지점을 산정한 후, 산정된 지점에 대하여 5-1000(m) 의 파장${\lambda}$과 100-2000(m/see)의 전파속도 $(V_s)$를 적용하여 파장${\lambda}$의 변화와 전파속도 $(V_s)$의 변화에 따른 단위 (휨) 변형률 곡선식을 산출하였다. 적합성이 높은 곡선 적합식을 개발하기 위해 비선형 최소자승법을 이용하여 다양한 형태의 지수방정식을 검정한 후, 가장 좋은 결과를 나타내는 곡선 적합식과 필요한 계수 값을 제시하였다.

Boundary condition coupling methods and its application to BOP-integrated transient simulation of SMART

  • Jongin Yang;Hong Hyun Son;Yong Jae Lee;Doyoung Shin;Taejin Kim;Seong Soo Choi
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.1974-1987
    • /
    • 2023
  • The load-following operation of small modular reactors (SMRs) requires accurate prediction of transient behaviors that can occur in the balance of plants (BOP) and the nuclear steam supply system (NSSS). However, 1-D thermal-hydraulics analysis codes developed for safety and performance analysis have conventionally excluded the BOP from the simulation by assuming ideal boundary conditions for the main steam and feed water (MS/FW) systems, i.e., an open loop. In this study, we introduced a lumped model of BOP fluid system and coupled it with NSSS without any ideal boundary conditions, i.e., in a closed loop. Various methods for coupling boundary conditions at MS/FW were tested to validate their combination in terms of minimizing numerical instability, which mainly arises from the coupled boundaries. The method exhibiting the best performance was selected and applied to a transient simulation of an integrated NSSS and BOP system of a SMART. For a transient event with core power change of 100-20-100%, the simulation exhibited numerical stability throughout the system without any significant perturbation of thermal-hydraulic parameters. Thus, the introduced boundary-condition coupling method and BOP fluid system model can expectedly be employed for the transient simulation and performance analysis of SMRs requiring daily load-following operations.

사각 관 구조물의 충격에 의한 좌굴특성 (Buckling Behavior of a Square Tube Structure by Lateral Impact Load)

  • 윤경호;송기남;강흥석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.812-818
    • /
    • 2001
  • The drop type impact test and finite element analysis are established for examining the buckling behavior of a square tube under the lateral impact load. Based on these results, the effects by the boundary conditions for supporting the structure are reviewed, which are as follows. One is pinned condition by screw; the other is fixed by welding. The critical impact force and acceleration by test are nearly same between two cases. However, the critical impact velocity of the pinned condition is higher than that of the fixed case. Therefore, the dynamic buckling behavior of a pinned structure is better than the fixed condition in view of critical impact velocity. These test and analysis results will be adaptable for predicting the dynamic structural integrity of a tube structure not only the axial impact event but the lateral impact event.

  • PDF

Numerical investigation of floating breakwater movement using SPH method

  • Najafi-Jilani, A.;Rezaie-Mazyak, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권2호
    • /
    • pp.122-125
    • /
    • 2011
  • In this work, the movement pattern of a floating breakwater is numerically analyzed using Smoothed Particle Hydrodynamic (SPH) method as a Lagrangian scheme. At the seaside, the regular incident waves with varying height and period were considered as the dynamic free surface boundary conditions. The smooth and impermeable beach slope was defined as the bottom boundary condition. The effects of various boundary conditions such as incident wave characteristics, beach slope, and water depth on the movement of the floating body were studied. The numerical results are in good agreement with the available experimental data in the literature The results of the movement of the floating body were used to determine the transmitted wave height at the corresponding boundary conditions.

부분적으로 유체가 채워진 원통형 관내의 외팔보 진동해석 (Vibration Analysis of an Cantilever Beam in Partially Liquid-Filled Cylindrical Pipe)

  • 권대규;유계형;방두열;이성철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.1073-1078
    • /
    • 2003
  • This paper presents the vibration characteristics of a cantilever beam in contact with a fluid using a PZT actuator and PVDF film. dynamic behaviors of a flexible beam-water interaction system are examined. The effect of the liquid level on free vibration of the composite beam in a partially liquid-filled circular cylinder is investigated. The coupled system is subject to an undisturbed boundary condition un the fluid domain. In the vibration analysis of a wetted beam. the decoupled analyses between beam and fluid have been conventionally employed by considering first the composite beam vibration in the all and secondly Performing the correction taking account for surrounding fluid effects. That is, this investigation was to look at how natural frequencies, mode shapes. and damping are affected by liquid level variations. The signals from the sensor according to the applied input voltage are digitalized and filtered in order to obtain the dynamic characteristics of the composite beam in contact with fluid. It was found that the coupled natural frequencies decreased with the fluid level for the identical composite beam due to added mass effect. In case of the free-free boundary condition, the natural frequency gently decreased at fluid water level between 20% and 80% in the first tending mode and we found out the bends of stair shape for added mass effect of the fluid.

  • PDF