• Title/Summary/Keyword: Dynamic Structural Optimization

Search Result 345, Processing Time 0.029 seconds

Transformation of Dynamic Loads into Equivalent Static Load based on the Stress Constraint Conditions (응력 구속조건을 고려한 동하중의 등가정하중으로의 변환)

  • Kim, Hyun-Gi;Kim, Euiyoung;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.165-171
    • /
    • 2013
  • Due to the difficulty in considering dynamic load in the view point of a computer resource and computing time, it is common that external load is assumed as ideal static loads. However, structural analysis under static load cannot guarantee the safety of design of the structures under dynamic loadings. Recently, the systematic method to construct equivalent static load from the given dynamic load has been proposed. Previous study has calculated equivalent static load through the optimization procedure under displacement constraints. However, previously reported works to distribute equivalent static load were based on ad-hoc methods. Improper selection of equivalent static loading positions may results in unreliable prediction of structural design. The present study proposes the selection method of the proper locations of equivalent static loads to dynamically applied loads when we consider transient dynamic structural problems. Moreover, it is appropriate to take into account the stress constraint as well as displacement constraint condition for the safety design. But the previously reported studies of equivalent static load design methods considered only displacement constraint conditions but not stress constraint conditions. In the present study we consider not only displacement constraint but also stress constraint conditions. Through a few numerical examples, the efficiency and reliability of proposed scheme is verified by comparison of the equivalent stress between equivalent static loading and dynamic loading.

An analysis scheme for protocols specified in SDL using reachability graph (도달성 그래프를 이용한 SDL 표현 프로토콜 분석 기법)

  • 김환철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3109-3120
    • /
    • 1996
  • SDL has been standardized to specify behavioral aspects of communication systems based on the formal description technique, and it is powerful and user friendly in the sense of supporting human communication and understanding, formal analysis andcomparison of behaviors, alternative implementations and design optimization, and its structural decomposition. However, SDL is not sufficient for an efficient handing of entrire system descriptions because the communication systems are generally very complex, and composed from the various interactions among sub-systems. Also, it is very difficult to explicitly verify dynamic views such as liveness and reachability. it leads the demands on analysis scheme to verify dynamic behaviros of specified systems. This paper presents modeling concepts of Petri Nets from SDL and transformation rules to Numerical Petri Nets to provide efficient technqiques for verification of dynamic behaviors, and proposes the reachability garaph that is able to trace all reachable states of a modeled system and reduce an information loss on the reachability tree.

  • PDF

Retrofit strategy issues for structures under earthquake loading using sensitivity-optimization procedures

  • Manolis, G.D.;Panagiotopoulos, C.G.;Paraskevopoulos, E.A.;Karaoulanis, F.E.;Vadaloukas, G.N.;Papachristidis, A.G.
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.109-127
    • /
    • 2010
  • This work aims at introducing structural sensitivity analysis capabilities into existing commercial finite element software codes for the purpose of mapping retrofit strategies for a broad group of structures including heritage-type buildings. More specifically, the first stage sensitivity analysis is implemented for the standard deterministic environment, followed by stochastic structural sensitivity analysis defined for the probabilistic environment in a subsequent, second phase. It is believed that this new generation of software that will be released by the industrial partner will address the needs of a rapidly developing specialty within the engineering design profession, namely commercial retrofit and rehabilitation activities. In congested urban areas, these activities are carried out in reference to a certain percentage of the contemporary building stock that can no longer be demolished to give room for new construction because of economical, historical or cultural reasons. Furthermore, such analysis tools are becoming essential in reference to a new generation of national codes that spell out in detail how retrofit strategies ought to be implemented. More specifically, our work focuses on identifying the minimum-cost intervention on a given structure undergoing retrofit. Finally, an additional factor that arises in earthquake-prone regions across the world is the random nature of seismic activity that further complicates the task of determining the dynamic overstress that is being induced in the building stock and the additional demands placed on the supporting structural system.

Optimal Design for Weight Reduction of Rotorcraft Shaft System (회전익기의 축계 경량화를 위한 최적설계)

  • Kim, Jaeseung;Moon, Sanggon;Han, Jeongwoo;Lee, Geun-Ho;Kim, Min-Geun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.243-248
    • /
    • 2022
  • Weight optimization was performed for a rotorcraft shaft system using one-dimensional Euler-Bernoulli beam elements. Torsion, shaft support stiffness such as bearings, flange mass are all considered. To guarantee structural dynamic stability, eigenvalue analysis was performed to avoid critical speed and tooth mesh excitation form the gearbox. The weight optimization was performed by adjusting the thickness and radius while the length of the shaft was fixed, and the optimization process was divided into two stages. In the first, the weight is optimized with the torsional strength constraint. In the second, the difference between the primary mode of shaft and the critical speed is maximized so that the primary mode of the shaft can avoid the critical speed while the constraint on the torsional strength of the shaft is satisfied according to the standard for shaft system stability (AMC P 706-201, 1974). The proposed method was verified by comparing the results of the optimal design using the given one-dimensional beam elements with the stress results of the 3D finite element and the actual manufactured shaft.

Nonlinea Perturbation Method for Dynamic Structural Redesign (동적(動的) 구조(構造) 재설계(再說計)를 위한 비선형(非線形) 섭동법(攝動法))

  • Kyu-Nam,Cho
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.1
    • /
    • pp.39-45
    • /
    • 1989
  • Many mechanical systems including ships and/or offshore structures have poor dynamic response characteristics such as undesirable natural frequencies and undesirable mode shapes. It is mandatory to redesign the structure. In this paper a procedure for the dynamic redesign of an undamped structural system is presented. The method which uses a penalty function with a penalty term containing error in equilibrium for a given vibration mode may have a shortcoming. This method includes unconstrained eigenvector degrees of freedom as unknowns. In the work developed here, only constrained mode shape changes are used in the solution procedure, resulting in a reduction of the unnecessary calculations. Among the set of equations which characterizes the redesign of the structural systems, the under constrained problem is discussed here and formulated as an optimization problem, with an optimal criterion such as minimum change or minimum structural weight of the system. Four simple numerical applications illustrate the efficiency of the method. The method can be applied to the vibration problems of ships and/or offshore structures with an implementation of the commercial FE codes.

  • PDF

Optimum Structural Design of Space truss with consideration in Snap-through buckling (뜀-좌굴을 고려한 공간 트러스의 최적구조설계에 관한 연구)

  • Shon, Su-Deok;Lee, Seung-Jae;Choi, Jae-Hyun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.89-98
    • /
    • 2012
  • This study investigates the optimum structural design of space truss considering global buckling, and is to obtain the minimal weight of the structure. The mathematical programming method is used for optimization of each member by member force. Besides, dynamic programming method is adapted for consideration in snap-through buckling. The mathematical modeling for optimum design of truss members consists of objective function of total weight and constrain equations of allowable tensile (or compressive) stress and slenderness. The tangential stiffness matrix is examined to find the critical point on equilibrium path, and a ratio of the buckling load to design load is reflected in iteration procedures of dynamic programming method to adjust the stiffness of space truss. The star dome is examined to verify the proposed optimum design processor. The numerical results of the model are conversed well and satisfied all constrains. This processor is a relatively simple method to carry out optimum design with consideration in global buckling, and is viable in practice with respect to structural design.

Evaluation of Static/Dynamic Structural Strength for Automotive Round Recliner (자동차용 라운드 리클라이너 정적/동적 구조 강도 평가)

  • Lee Dongjae;Park Changsoo;Lee Kyoungteak;Kim Sangbum;Kim Heonyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.140-146
    • /
    • 2005
  • This study presents the development of a round recliner using the finite element method. That reduces the number of test repeating times and gives an information about stiffness. A simulation model of round recliner mounting seat module and tooth strength simulation are established using a PAM-CRASH and ABAQUS. With the optimization of gear profile, structural strength design of round recliner was achieved. The round recliner seat module simulation, structure strength simulation and a crash safety are requested by FMVSS test. Solution of round recliner optimum variable study and design problem are searched for round recliner stress, deformation and application. Also an examination of safety is made.

Reduction of Structure-borne Noises in a Two-Dimensional Cavity using Optimal Treatment of Damping Materials (제진재의 최적배치를 통한 이차원 공동의 구조기인소음 저감)

  • Lee, Doo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1581-1587
    • /
    • 2006
  • An optimization formulation is proposed to minimize sound pressures in a two-dimensional cavity by controlling the attachment area of viscoelastic unconstrained damping materials. For the analysis of structural- acoustic systems, a hybrid approach that uses finite elements for structures and boundary elements for cavity is adopted. Four-parameter fractional derivative model is used to accurately represent dynamic characteristics of the viscoelastic materials with respect to frequency and temperature. Optimal layouts of the unconstrained damping layer on structural wall of cavity are identified according to temperatures and the amount of damping material by using a numerical search algorithm.

Dynamically equivalent element for an emboss embeded in a plate (평판의 국부적인 기하학적 변형을 모사하는 등가 요소 생성)

  • Song, Kyung-Ho;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.335.1-335
    • /
    • 2002
  • Among many structural dynamics modification methods for plate and shell vibration problems, embedding an emboss to the surface is very efficient. But deciding an optimal position and shape using optimization algorithm needs defining geometry and remeshing the model for every iteration step to implement the method, which takes much numerical cost. (omitted)

  • PDF