• Title/Summary/Keyword: Dynamic Service Selection

Search Result 60, Processing Time 0.025 seconds

Achieving Relative Loss Differentiation using D-VQSDDP with Differential Drop Probability (차별적이니 드랍-확률을 갖는 동적-VQSDDP를 이용한 상대적 손실차별화의 달성)

  • Kyung-Rae Cho;Ja-Whan Koo;Jin-Wook Chung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.1332-1335
    • /
    • 2008
  • In order to various service types of real time and non-real time traffic with varying requirements are transmitted over the IEEE 802.16 standard is expected to provide quality of service(QoS) researchers have explored to provide a queue management scheme with differentiated loss guarantees for the future Internet. The sides of a packet drop rate, an each class to differential drop probability on achieving a low delay and high traffic intensity. Improved a queue management scheme to be enhanced to offer a drop probability is desired necessarily. This paper considers multiple random early detection with differential drop probability which is a slightly modified version of the Multiple-RED(Random Early Detection) model, to get the performance of the best suited, we analyzes its main control parameters (maxth, minth, maxp) for achieving the proportional loss differentiation (PLD) model, and gives their setting guidance from the analytic approach. we propose Dynamic-multiple queue management scheme based on differential drop probability, called Dynamic-VQSDDP(Variable Queue State Differential Drop Probability)T, is proposed to overcome M-RED's shortcoming as well as supports static maxp parameter setting values for relative and each class proportional loss differentiation. M-RED is static according to the situation of the network traffic, Network environment is very dynamic situation. Therefore maxp parameter values needs to modify too to the constantly and dynamic. The verification of the guidance is shown with figuring out loss probability using a proposed algorithm under dynamic offered load and is also selection problem of optimal values of parameters for high traffic intensity and show that Dynamic-VQSDDP has the better performance in terms of packet drop rate. We also demonstrated using an ns-2 network simulation.

Control System of Service Robot for Hospital (병원용 서비스 로봇의 제어시스템)

  • 박태호;최경현;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.540-544
    • /
    • 2001
  • This paper addresses a hybrid control architecture for the hospital service robot, SmartHelper. In hybrid architecture, the deliberation takes place at planning layer while the reaction is dealt through the parallel execution of operations. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment. The deliberative controller accomplishes four functions which are path generation, selection of navigation way, command and monitoring. The reactive controller uses fuzzy and potential field method for robot navigation. Through simulation under a virtual environment IGRIP, the effectiveness of the hybrid architecture is verified.

  • PDF

Study on Development of Hospital Service Robot SmartHelper (병원용 서비스 로봇 SmartHelper 개발에 관한 연구)

  • Choi, Kyung-Hyun;Lee, Seok-Hee;Park, Tae-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.325-329
    • /
    • 2001
  • This paper addresses a control architecture for the hospital service robot, SmartHelper. With a sensing-reasoning-acting paradigm, the deliberation takes place at planning layer while the reaction is dealt through the parallel execution of operations. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment. The deliberative controller accomplishes four functions which are path generation, selection of navigation way, command and monitoring. The reactive controller uses fuzzy and potential field method for robot navigation. Through simulation under a virtual environment IGRIP, the effectiveness of the control architecture is verified.

  • PDF

Dynamic Cell Reconfiguration Framework for Energy Conservation in Cellular Wireless Networks

  • Son, Kyuho;Guruprasad, Ranjini;Nagaraj, Santosh;Sarkar, Mahasweta;Dey, Sujit
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.567-579
    • /
    • 2016
  • Several energy saving techniques in cellular wireless networks such as active base station (BS) selection, transmit power budget adaptation and user association have been studied independently or only part of these aspects have been considered together in literature. In this paper, we jointly tackle these three problems and propose an integrated framework, called dynamic cell reconfiguration (DCR). It manages three techniques operating on different time scales for ultimate energy conservation while guaranteeing the quality of service (QoS) level of users. Extensive simulations under various configurations, including the real dataset of BS topology and utilization, demonstrate that the proposed DCR can achieve the performance close to an optimal exhaustive search. Compared to the conventional static scheme where all BSs are always turned on with their maximum transmit powers, DCR can significantly reduce energy consumption, e.g., more than 30% and 50% savings in uniform and non-uniform traffic distribution, respectively.

Selection of polymer material in the design optimization of a new dynamic spinal implant

  • Monede-Hocquard, Lucie;Mesnard, Michel;Ramos, Antonio;Gille, Olivier
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.4
    • /
    • pp.237-248
    • /
    • 2015
  • "Dynamic stabilization" systems have been developed in recent years to treat degenerative disorders of the spinal column. In contrast to arthrodesis (fusion), the aim here is to conserve intervertebral mobility to maximize comfort. When developing innovative concepts, many mechanical tests need to be carried out in order to validate the different technological solutions. The present study focuses on the B Dyn$^{(R)}$ "dynamic stabilization" device (S14$^{(R)}$ Implants, Pessac, France), the aim being to optimize the choice of polymer material used for one of the implant's components. The device allows mobility but also limit the range of movement. The stiffness of the ring remains a key design factor, which has to be optimized. Phase one consisted of static tests on the implant, as a result of which a polyurethane (PU) was selected, material no.2 of the five elastomers tested. In phase two, dynamic tests were carried out. The fatigue resistance of the B Dyn$^{(R)}$ system was tested over five million cycles with the properties of the polymer elements being measured using dynamic mechanical analysis (DMA) after every million cycles. This analysis demonstrated changes in stiffness and in the damping factor which guided the choice of elastomer for the B Dyn$^{(R)}$ implant.

Analysis of the Price-Selection Problem in Priority-based Scheduling (우선순위 방식 스케쥴링에서의 가격선택 문제의 분석)

  • Park, Sun-Ju
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.2
    • /
    • pp.183-192
    • /
    • 2006
  • This paper analyzes the price-selection problem under priority-based scheduling for QoS (Quality of Service) network services, i.e., how to determine the price associated with each service level. In particular, we focus on the problems with the pricing mechanism based on equilibrium analysis. We claim that the assumptions needed to produce equilibrium nay not hold in some important environments. Specifically, (a) the individual user's impact on the system is not infinitesimal and (b) users do not always have up-to-date global system-status knowledge crucial for optimal user decisions required for equilibrium. These may make the equilibrium models inaccurate in realistic environments. We examine the accuracy of some existing equilibrium methods by using a dynamic model that we have developed for system behavior analysis. The analysis indicates that equilibrium methods fail to model accurately the system behavior in some realistic environments.

NDynamic Framework for Secure VM Migration over Cloud Computing

  • Rathod, Suresh B.;Reddy, V. Krishna
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.476-490
    • /
    • 2017
  • In the centralized cloud controlled environment, the decision-making and monitoring play crucial role where in the host controller (HC) manages the resources across hosts in data center (DC). HC does virtual machine (VM) and physical hosts management. The VM management includes VM creation, monitoring, and migration. If HC down, the services hosted by various hosts in DC can't be accessed outside the DC. Decentralized VM management avoids centralized failure by considering one of the hosts from DC as HC that helps in maintaining DC in running state. Each host in DC has many VM's with the threshold limit beyond which it can't provide service. To maintain threshold, the host's in DC does VM migration across various hosts. The data in migration is in the form of plaintext, the intruder can analyze packet movement and can control hosts traffic. The incorporation of security mechanism on hosts in DC helps protecting data in migration. This paper discusses an approach for dynamic HC selection, VM selection and secure VM migration over cloud environment.

Methodology of Resilient Dynamic Path Management in GMPLS Network under Multiple Link Failures (GMPLS 네트워크에서 다중 경로 장애 발생시 Resilience를 만족하는 동적 경로 관리 방법)

  • Park Jong-Tae;Lee Wee-Hyuk;Kwon Jung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5B
    • /
    • pp.397-404
    • /
    • 2006
  • As an increase in recent optical network-based IP services, GMPLS management framework becomes more important than ever before. In this paper, we propose the dynamic GMPLS path management algorithm, which can satisfy the users with their traffic engineering recovery requirements and find out the best backup service path under multiple link failures. To be more specific, we are deriving the soluble conditions of a backup path which is satisfied in a GMPLS network. In addition, through proposing the fast backup path selection algorithm, we can sufficiently satisfy a user's recovery requirement and minimally protect the suspension of the service against a link failure.

Dynamic Analysis of Carbon-fiber-reinforced Plastic for Different Multi-layered Fabric Structure (적층 직물 구조에 따른 탄소강화플라스틱 소재 동적 특성 분석)

  • Kim, Chan-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.375-382
    • /
    • 2016
  • The mechanical property of a carbon-fiber-reinforced plastic (CFRP) is subjected to two elements, carbon fiber and polymer resin, in a first step and the selection of multi-layered structure is second one. Many combination of fabric layers, i.e. plainweave, twillweave, can be derived for candidates of test specimen used for a basic mechanical components so that a reliable identification of dynamic nature of possible multi-layered structures are essential during the development of CFRP based component system. In this paper, three kinds of multi-layered structure specimens were prepared and the dynamic characteristics of service specimens were conducted through classical modal test process with impact hammer. In addition, the design sensitivity analysis based on transmissibility function was applied for the measured response data so that the response sensitivity for each resonance frequency were compared for three CFRP test specimens. Finally, the evaluation of CFRP specimen over different multi-layered fabric structures are commented from the experimental consequences.

Intervenient Stackelberg Game based Bandwidth Allocation Scheme for Hierarchical Wireless Networks

  • Kim, Sungwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4293-4304
    • /
    • 2014
  • In order to ensure the wireless connectivity and seamless service to mobile users, the next generation network system will be an integration of multiple wireless access networks. In a heterogeneous wireless access system, bandwidth allocation becomes crucial for load balancing to avoid network congestion and improve system utilization efficiency. In this article, we propose a new dynamic bandwidth allocation scheme for hierarchical wireless network systems. First, we derive a multi-objective decision criterion for each access point. Second, a bargaining strategy selection algorithm is developed for the dynamic bandwidth re-allocation. Based on the intervenient Stackelberg game model, the proposed scheme effectively formulates the competitive interaction situation between several access points. The system performance of proposed scheme is evaluated by using extensive simulations. With a simulation study, it is confirmed that the proposed scheme can achieve better performance than other existing schemes under widely diverse network environments.