• Title/Summary/Keyword: Dynamic Robust Design

Search Result 335, Processing Time 0.023 seconds

Robust Speech Segmentation Method in Noise Environment for Speech Recognizer (음성인식기 구현을 위한 잡음에 강인한 음성구간 검출기법)

  • 김창근;박정원;권호민;허강인
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.2
    • /
    • pp.18-24
    • /
    • 2003
  • One of the most important subjects in the implementation of real time speech recognizer is to design both reliable VAD(Voice Activity Detection) and suitable speech feature vector. But, because it is difficult to calculate reliable VAD in the environment having surrounding noise, designed suitable speech feature vector may not be obtained. Solving this problem, in this paper, we implement not only short time power spectrum which is generally used but also two additive parameters, the comparison measure of spectrum density having robust property in noise and linear discriminant function using linear regression, then perform VAD by using the combination of each parameter having apt weight in other magnitudes of surrounding noise and confirm that proposed parameters show a robust characteristic in circumstances having surrounding noise by using DTW(Dynamic Time Waning) in recognition experiment.

  • PDF

Design of an RBFN-based Adaptive Tracking Controller for an Uncertain Mobile Robot (불확실한 이동 로봇에 대한 RBFN 기반 적응 추종 제어기의 설계)

  • Shin, Jin-Ho;Baek, Woon-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1238-1245
    • /
    • 2014
  • This paper proposes an RBFN-based adaptive tracking controller for an electrically driven mobile robot with parametric uncertainties and external disturbances. A mobile robot model considered in this paper includes all models of the robot body and actuators with uncertain kinematic and dynamic parameters, and uncertain frictions and external disturbances. The proposed controller consists of an RBFN(Radial Basis Function Network) and a robust adaptive controller. The presented RBFN is used to approximate unknown nonlinear robot dynamic functions. The proposed controller is adjusted by the adaptation laws obtained through the Lyapunov stability analysis. The proposed control scheme does not a priori need the accurate knowledge of all parameters in the robot kinematics, robot dynamics and actuator dynamics. Also, nominal parameter values are not required in the controller. The global stability of the closed-loop robot control system is guaranteed using the Lyapunov stability theory. Simulation results show the validity and robustness of the proposed control scheme.

Finite Element Modal Analysis of a Spinning Flexible Disk-Spindle System Considering the Flexibility of Supporting Structures and an Head-Suspension-Actuator in a HDD (지지구조와 헤드-서스펜션-액츄에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Sang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.128-135
    • /
    • 2006
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts tue vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

  • PDF

Finite Element Modal Analysis of a Spinning Flexible Disk-spindle System Considering the Flexibility of Supporting Structures and an Head-suspension-actuator in a HDD (지지구조와 헤드-서스펜션-액추에이터의 유연성을 고려한 HDD 유연 회전 디스크-스핀들 시스템의 유한 요소 고유 진동 해석)

  • Seo, Chan-Hee;Lee, Ho-Sung;Jang, Gun-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.24-32
    • /
    • 2007
  • This paper presents a finite element method to analyze the free vibration of a flexible HDD composed of the spinning disk-spindle system with fluid dynamic bearings(FDBs), the head-suspension-actuator with pivot bearings, and the base plate with complicated geometry. Experimental modal testing shows that the proposed method well predicts the vibration characteristics of a HDD. This research also shows that even the vibration motion of the spinning disk corresponding to half-speed whirl and the pure disk mode are transferred to a head-suspension-actuator and base plate through the air bearing and the pivot bearing consecutively. The proposed method can be effectively extended to investigate the forced vibration of a HDD and to design a robust HDD against shock.

Modal-based model reduction and vibration control for uncertain piezoelectric flexible structures

  • Yalan, Xu;Jianjun, Chen
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.489-504
    • /
    • 2008
  • In piezoelectric flexible structures, the contribution of vibration modes to the dynamic response of system may change with the location of piezoelectric actuator patches, which means that the ability of actuators to control vibration modes should be taken into account in the development of modal reduction model. The spatial $H_2$ norm of modes, which serves as a measure of the intensity of modes to system dynamical response, is used to pick up the modes included in the reduction model. Based on the reduction model, the paper develops the state-space representation for uncertain flexible tructures with piezoelectric material as non-collocated actuators/sensors in the modal space, taking into account uncertainties due to modal parameters variation and unmodeled residual modes. In order to suppress the vibration of the structure, a dynamic output feedback control law is designed by imultaneously considering the conflicting performance specifications, such as robust stability, transient response requirement, disturbance rejection, actuator saturation constraints. Based on linear matrix inequality, the vibration control design is converted into a linear convex optimization problem. The simulation results show how the influence of vibration modes on the dynamical response of structure varies with the location of piezoelectric actuators, why the uncertainties should be considered in the reductiom model to avoid exciting high-frequency modes in the non-collcated vibration control, and the possiblity that the conflicting performance specifications are dealt with simultaneously.

Design of an iterative learning controller for a class of linear dynamic systems with time-delay (시간 지연이 있는 선형 시스템에 대한 반복 학습 제어기의 설계)

  • Park, Kwang-Hyun;Bien, Zeung-Nam;Hwang, Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.295-300
    • /
    • 1998
  • In this paper, we point out the possibility of the divergence of control input caused by the estimation error of delay-time when general iterative learning algorithms are applied to a class of linear dynamic systems with time-delay in which delay-time is not exactly measurable, and then propose a new type of iterative learning algorithm in order to solve this problem. To resolve the uncertainty of delay-time, we propose an algorithm using holding mechanism which has been used in digital control system and/or discrete-time control system. The control input is held as constant value during the time interval of which size is that of the delay-time uncertainty. The output of the system tracks a given desired trajectory at discrete points which are spaced auording to the size of uncertainty of delay-time with the robust property for estimation error of delay-time. Several numerical examples are given to illustrate the effeciency of the proposed algorithm.

  • PDF

Adaptive Robust Control of Mechanical Systems with Uncertain Nonlinear Dynamic Friction (비선형 마찰력이 있는 시스템의 강인한 적응제어기법)

  • Lee, Tae-Bong;Yang, Hyun-Suk;Kim, Byung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5194-5201
    • /
    • 2011
  • In this paper, an adaptive nonlinear friction compensation scheme for second-order nonlinear mechanical system with a partially known nonlinear dynamic friction is proposed to achieve asymptotic position and velocity tracking in the absence of disturbances and modeling errors. It is also shown that even with disturbances and modeling errors, in contrast to existing other adaptive control schemes, by proper adjustment of design parameters, reduced error bounds on position and velocity tracking can be achieved.

An Adaptive Algorithm Applied to a Design of Robust Observer

  • Son, Young-Ik;Hyungbo Shim;Juhoon Back;Jo, Nam-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1443-1449
    • /
    • 2003
  • Primary goal of adaptive observers would be to estimate the true states of a plant. Identification of unknown parameters is of secondary interest and is achieved frequently with the persistent excitation condition of some regressors. Nevertheless, two problems are linked to each other in the classical approaches to adaptive observers; as a result, we get a good state estimate once after a good parameter estimate is obtained. This paper focuses on the state estimation without parameter identification so that the state is estimated regardless of persistent excitation. In this direction of research, Besancon (2000) recently summarized that most of adaptive observers in the literature share one common canonical form, in which unknown parameters do not affect the unmeasured states. We enlarge the class of linear systems from the canonical form of (Besancon, 2000) by proposing an adaptive observer (with additional dynamics) that allows unknown parameters to affect those unmeasured states. A recursive algorithm is presented to design the proposed dynamic observer systematically. An example confirms the design procedure with a simulation result.

A multivariable controller design of 6 DOF motion simulator (6자유도 운동재현기의 다변수 제어기 설계)

  • 이호영;강지윤;이교일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.449-454
    • /
    • 1994
  • The Stewart Platform is one example of a motion simulator which generater 6DOF motion in space by six actuators in parallel. The presented control methrol of 6DOF motion simulator is generally classified into two types, one is SISO and the other is MIMO control type. The SISO control can't compensate for external load variation and different dynamic behavior of 6DOF motion, trerefore this type don's control motion precisely. On the other hand, the MIMO control compensates for a interference of 6DOF motion because MIMO controller is designed with 6DOF motion simulator synamics. But MIMO control of motion simulator has a complexity of 6DOF displacement feedback, because in oder to obtain feedback value we must solve the forward kinematics using measurement of cylinder length or design a state estimator, unless measurement of 6DOF displacement is possible. In this paper, a multivariable controller using H .inf. optimal control theory is designed to consider a interference of 6DOF motion and to obtain robust,precise control of system. Also in order to solve the mentioned problem of MIMO control, this paper presents a modified MIMO control model which control 6DOF motion by using feedback of measurement od cylinder length.

  • PDF

A New Gain Scheduled QFT Method Based on Neural Networks for Linear Time-Varying System (선형 시변시스템을 위한 신경망 기반의 새로운 이득계획 QFT 기법)

  • Park, Jae-Seon;Im, Ki-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.758-767
    • /
    • 2000
  • The properties of linear time-varying(LTV) systems vary because of the time-varying property of plant parameters. The generalized controller design method for linear time-varying systems does not exit because the analytic soultion of dynamic equation has not been found yet. Hence, to design a controller for LTV systems, the robust control methods for uncertain LTI systems which are the approximation of LTV systems have been generally ised omstead. However, these methods are not sufficient to reflect the fast dynamics of the original time-varying systems such as missiles and supersonic aircraft. In general, both the performance and the robustness of the control system which is designed with these are not satisfactory. In addition, since a better model will give the more robustness to the controlled system, a gain scheduling technique based on LTI controller design methods has been uesd to solve time problem. Therefore, we propose a new gain scheduled QFT method for LTV systems based on neural networks in this paper. The gain scheduled QFT involves gain dcheduling procedured which are the first trial for QFT and are well suited consideration of the properties of the existing QFT method. The proposed method is illustrated by a numerical example.

  • PDF