• Title/Summary/Keyword: Dynamic Robust Design

Search Result 335, Processing Time 0.026 seconds

설계자 선호도를 고려한 동적 시스템의 강건설계법 (A preference­based design metric in dynamic robust design)

  • 김경모
    • 품질경영학회지
    • /
    • 제31권4호
    • /
    • pp.239-246
    • /
    • 2003
  • Dynamic robust design has been regarded as the most powerful design methodology for improving product quality, Dynamic SN ratio adopted in dynamic robust design combines two major quality attributes, the variability around the linear function and the slope of the linear function, into a single design metric. The principal shortcoming associated with the dynamic SN ratio is that the metric is independent of designer's preferences for the quality attributes due to priori sets of attribute tradeoff values inherent in it. Therefore, a more rigorous preference­based design metric to accurately capture designer's intent and preference is needed. A new design metric that can be used in dynamic robust design is proposed. The effectiveness of the proposed design metric is examined with the aid of a demonstrative case study and the results are discussed.

다구치의 동적 강건설계와 그 대안에 관한 고찰 (A Review on the Taguchi Method and Its Alternatives for Dynamic Robust Design)

  • 김성준
    • 대한산업공학회지
    • /
    • 제39권5호
    • /
    • pp.351-360
    • /
    • 2013
  • Taguchi's robust design is a method for quality improvement by making a system insensitive to uncontrollable variations incurred by noise factors and it has received much attention in a wide range of engineering fields. Robust design can be broadly classified into static and dynamic ones. This paper is concerned with dynamic robust design. Taguchi suggested to use a signal-to-noise ratio as a robustness measure, but there has been much debate and criticism on its blind use. In order to cope with this drawback, many alternatives have been proposed. They are divided into performance measure modeling (PMM) and response function modeling (RFM) approaches. In this paper, both PMM and RFM approaches for dynamic robust design are reviewed. An example for illustration is provided as well.

동특성 강건 설계를 이용한 사출품의 휨 최소화 (Minimization of Warpage of Injection Molded Parts using Dynamic Robust Design)

  • 김경모;박종천
    • 한국기계가공학회지
    • /
    • 제14권1호
    • /
    • pp.44-50
    • /
    • 2015
  • This paper presents a heuristic process-optimization procedure for minimizing warpage in injection-molded parts based on the dynamic robust design methodology. The injection molding process is known to have intrinsic variations of its process conditions due to various factors, including incomplete process control facilities. The aim of the robust design methodology advocated by Taguchi is to determine the optimum design variables in a system which is robust to variations in uncontrollable factors. The proposed procedure can determine the optimal robust conditions of injection molding processes at a minimum cost through a trade-off strategy between the degree of warpage and the packing time.

파라미터 불확실성,모델 불확실성,한계 잡음에 대한 $H^{\infty}$ 적응제어기 설계 ($H^{\infty}$ robust adaptive controller design with parameter uncertainty, unmodeled dynamic and bounded noise)

  • 백남석;양원영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.454-456
    • /
    • 1998
  • Traditional adaptive control algorithms are not robust to dynamic uncertainties. The adaptive control algorithms developed previously to deal with dynamic uncertainties do not facilitate quantitative design. We proposed a new robust adaptive control algorithms consists of an $H^{\infty}$ suboptimal control law and a robust parameter estimator. Numerical examples showing the effectiveness of the $H^{\infty}$ adaptive scheme are provided.

  • PDF

다구치의 표준 SN비를 이용한 이산형 시스템의 로버스트설계 (Robust Design of a Discrete System Using Taguchi's Standard Signal-to-Noise Ratio)

  • 김성준
    • 품질경영학회지
    • /
    • 제27권2호
    • /
    • pp.101-111
    • /
    • 1999
  • The purpose of Taguchi's robust design lies in quality improvement by making the performance of a system robust against noise. Robust design with continuous performance characteristics has been the subject of much interest. However relatively little work has been done for discrete characteristics such as 0-1, good-medium-bad, etc. This paper is concerned with robust design of a discrete dynamic system. We first investigate the Taguchi method for robust design with discrete dynamic characteristics and discuss his standard error probability (SEP). Then we propose a generalized SEP, which makes it possible to encompass a wider class of robust design problems. An illustration is also given by example.

  • PDF

확률적 설계 방법을 이용한 동적 시스템의 강건 설계 (Robust Design of a Dynamic System Using a Probabilistic Design Method)

  • 류장희;최인상;김주성;손영갑
    • 대한기계학회논문집A
    • /
    • 제35권10호
    • /
    • pp.1171-1178
    • /
    • 2011
  • 본 논문은 동적 시스템인 구동기의 강건설계를 수행한 결과를 제시한다. 구동기를 구성하는 부품들의 변량은 구동기의 성능에 변량을 유발한다. 따라서 부품들의 변량에 둔감한 구동기의 성능을 확보하기 위해 구동기에 대해서 강건설계를 수행하였다. 구동기를 구성하는 부품들을 전달함수로 표현하여 시뮬링크 모델로 구축하였으며, 시뮬링크 모델을 이용하여 설계 변수 조합에 따른 구동기의 응답을 얻었다. 또한 반응표면법을 적용하여 구동기의 응답을 설계 변수들의 2차 함수로 근사화하였다. 구동기응답을 출력으로 하는 근사화된 모델에 확률적 설계방법을 적용하여 강건한 구동기의 성능을 위한 최적 설계변수를 결정하고 기존 설계와 비교한 결과를 제시하였다.

견실한 비선형 dynamic inversion 방법을 이용한 오토파일롯 설계 (Autopilot design using robust nonlinear dynamic inversion method)

  • 김승환;송찬호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1492-1495
    • /
    • 1996
  • In this paper, an approach to autopilot design based on the robust nonlinear dynamic inversion method is proposed. Both unknown parameters and uncertainty bounds are estimated and parameter estimates are used in the fast inversion. Furthermore, to get more robustness slow inversion is incorporated with MRAC(Model Reference Adaptive Control) and sliding mode control where the estimates of uncertainty bounds are used. The proposed method is applied to the pitch autopilot design of a missile system and excellent performance is shown via computer simulation.

  • PDF

구간 플랜트에 대한 견실한 레귤레이타 설계 (Robust regulator design for an interval plant)

  • 김기두;김석중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.173-178
    • /
    • 1993
  • In this paper, we present an algorithmic technique for determining a feedback compensator which will stabilize the interval dynamic system, specifically, the robust regulator design for interval plants. The approach taken here is to allow the system parameters to live within prescribed intervals then design a dynamic feedback compensator which guarantees closed-loop system stable. The main contribution of this paper is the idea of introducing a "simplified Kharitonov's result" for low order polynomials to search for suitable compensator parameters in the compensator parameter space to make the uncertain syste robust. We also design the robust regulator which will D-stabilize (have the closed-loop poles in the left sector only) the dynamic interval system while having good performance. The nuerical examples are given to show the substantially improved robustness which results from our approach. approach.

  • PDF

구경 플랜트에 대한 강건한 레귤레이터의 설계 (Robust Regulator Design for an Interval Plant)

  • 김기두;김석중;조한유
    • 전자공학회논문지B
    • /
    • 제31B권8호
    • /
    • pp.64-73
    • /
    • 1994
  • In this paper we present an algorithmic technique for determining a feedback compensator which will stabilize the interval dynamic system specifically the robust regulator design for interval plants. The approach taken here is to allow the system parameters to live within prescribed intervals then design a dynamic feedback compensator which guarantees closed-loop system stable. The main contribution of this paper is the idea of introducting a "simplified Kharitonov`s results" for low order polynomials to search for suitable compensator parameters in the compensator parammeter space to make the uncertain system robust. We also design the robust regulator which will $D_{\phi}$ -stabilize (have the closed-loop poles in the left sector only) the dynamic interval system while having good performance. the numerical examples are given to show the substantially improved robustness which results from our approach.

  • PDF

Dynamic Inversion과 PI 제어를 이용한 견실한 유도탄 오토파일롯 설계 (Robust Missile Autopilot Design using Dynamic Inversion and PI Control)

  • 조성진
    • 한국군사과학기술학회지
    • /
    • 제10권2호
    • /
    • pp.53-60
    • /
    • 2007
  • This paper presents a robust nonlinear autopilot design method based on dynamic inversion and PI(Proportional-Integral) control law. The new controller structure which is different from previous work is composed of classical linear PI control law and nonlinear fast dynamic inversion. A pitch axis model of highly maneuverable missiles and a linearized model for designing Pl controller are presented. The performance of proposed method is illustrated via nonlinear simulations including aerodynamic uncertainties and actuator dynamics.