• Title/Summary/Keyword: Dynamic Obstacles

Search Result 165, Processing Time 0.031 seconds

Implementing Dynamic Obstacle Avoidance of Autonomous Multi-Mobile Robot System (자율 다개체 모바일 로봇 시스템의 동적 장애물 회피 구현)

  • Kim, Dong W.;Yi, Cho-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • For an autonomous multi-mobile robot system, path planning and collision avoidance are important functions used to perform a given task collaboratively and cooperatively. This study considers these important and challenging problems. The proposed approach is based on a potential field method and fuzzy logic system. First, a global path planner selects the paths of the robots that minimize the cost function from each robot to its own target using a potential field. Then, a local path planner modifies the path and orientation from the global planner to avoid collisions with static and dynamic obstacles using a fuzzy logic system. In this paper, each robot independently selects its destination and considers other robots as dynamic obstacles, and there is no need to predict the motion of obstacles. This process continues until the corresponding target of each robot is found. To test this method, an autonomous multi-mobile robot simulator (AMMRS) is developed, and both simulation-based and experimental results are given. The results show that the path planning and collision avoidance strategies are effective and useful for multi-mobile robot systems.

Navigation Strategy Of Mobile Robots based on Fuzzy Neural Network with Hierarchical Structure (계층적 구조를 가진 Fuzzy Neural Network를 이용한 이동로봇의 주행법)

  • 최정원;한교경;박만식;이석규
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.367-372
    • /
    • 2001
  • This paper proposes a hierachically structured navigation algorithm for multiple mobile robots under unknown dynamic environment. The proposed algorithm consists of three basic parts as follows. The first part based on the fuzzy rule generates the turning angle and moving distance of the robot for goal approach without obstacles. In the second part, using both fuzzy and neural network, the angle and distance of the robot to avoid collision with dynamic and static obstacles are obtained. The final adjustment of the weighting factor based on fuzzy rule for moving and avoiding distance of the robots is provided in the third stage. Some simulation results show the effectiveness of the proposed algorithm.

  • PDF

Navigation of Autonomous Mobile Robot with Intelligent Controller (지능제어기를 이용한 자율 이동로봇의 운항)

  • Choi, Jeong-Won;Kim, Yeon-Tae;Lee, Suk-Gyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.180-185
    • /
    • 2003
  • This paper proposes an intelligent navigation algorithm for multiple mobile robots under unknown dynamic environment. The proposed algorithm consists of three basic parts as follows. The first part based on the fuzzy rule generates the turning angle and moving distance of the robot for goal approach without obstacles. In the second part, using both fuzzy and neural network, the angle and distance of the robot to avoid collision with dynamic and static obstacles are obtained. The final adjustment of the weighting factor based on fuzzy rule for moving and avoiding distance of the robots is provided in the third stage. The experiments which demonstrate the performance of the proposed intelligent controller is described.

Detection of a Land and Obstacles in Real Time Using Optimal Moving Windows (최적의 Moving Window를 사용한 실시간 차선 및 장애물 감지)

  • Choi, Sung-Yug;Lee, Jang-Myung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.57-69
    • /
    • 2000
  • A moving window technique for detecting a lane and obstacles using the Images captured by a CCD camera attached in an automobile, is proposed in this paper To process the dynamic images in real time, there could be many constraints on the hardware To overcome these hardware constraints and to detect the lane and obstacles in real time, the optimal size of window IS determined based upon road conditions and automobile states. By utilizing the sub-Images inside the windows, detection of the lane and obstacles become possible m real time. For each Image frame, the moving windows are re-determined following the predicted directions based on Kalman filtering theory to Improve detection accuracy, as well as efficiency The feasibility of proposed algorithm IS demonstrated through the simulated experiments of highway driving.

  • PDF

A study on road damage detection for safe driving of autonomous vehicles based on OpenCV and CNN

  • Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.47-54
    • /
    • 2022
  • For safe driving of autonomous vehicles, road damage detection is very important to lower the potential risk. In order to ensure safety while an autonomous vehicle is driving on the road, technology that can cope with various obstacles is required. Among them, technology that recognizes static obstacles such as poor road conditions as well as dynamic obstacles that may be encountered while driving, such as crosswalks, manholes, hollows, and speed bumps, is a priority. In this paper, we propose a method to extract similarity of images and find damaged road images using OpenCV image processing and CNN algorithm. To implement this, we trained a CNN model using 280 training datasheets and 70 test datasheets out of 350 image data. As a result of training, the object recognition processing speed and recognition speed of 100 images were tested, and the average processing speed was 45.9 ms, the average recognition speed was 66.78 ms, and the average object accuracy was 92%. In the future, it is expected that the driving safety of autonomous vehicles will be improved by using technology that detects road obstacles encountered while driving.

Global Path Planning Algorithm Using a Skeleton Map and Dynamic Programming (골격지도와 동적 계획법을 이용한 전역경로계획 알고리즘)

  • Yang, Dong-Hoon;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2790-2792
    • /
    • 2005
  • This paper proposes a path-planning algorithm that enables a robot to reach the goal position while avoiding obstacles. The proposed method, which is based on dynamic programming, finds an optimum path to follow using a modified skeleton map method which exploits information on obstacle positions. Simulation results show the feasibility of the proposed method.

  • PDF

충돌회피를 위한 다관절 로봇의 최적 경로계획

  • 최진섭;양성모;강희용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.913-917
    • /
    • 1994
  • A collision-free geometric path for industrial articulated robot is searched among polyhedral obstacles considering kinematic charcteristics. Then minimum-time control of the geometric path is studied considering dynamic characteristics. The algorithm is simulated on PC for maximum speed, moving time and so forth.

  • PDF

Path Planning for Autonomous Mobile Robots by Modified Global DWA (수정된 전역 DWA에 의한 자율이동로봇의 경로계획)

  • Yoon, Hee-Sang;Park, Tae-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.389-397
    • /
    • 2011
  • The global dynamic window approach (DWA) is widely used to generate the shortest path of mobile robots considering obstacles and kinematic constraints. However, the dynamic constraints of robots should be considered to generate the minimum-time path. We propose a modified global DWA considering the dynamic constraints of robots. The reference path is generated using A* algorithm and smoothed by cardinal spline function. The trajectory is then generated to follows the reference path in the minimum time considering the robot dynamics. Finally, the local path is generated using the dynamic window which includes additional terms of speed and orientation. Simulation and experimental results are presented to verify the performance of the proposed method.

Efficient navigation of mobile robot based on the robot's experience in human co-existing environment

  • Choi, Jae-Sik;Chung, Woo-Jin;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2024-2029
    • /
    • 2005
  • In this paper, it is shown how a mobile robot can navigate with high speed in dynamic real environment. In order to achieve high speed and safe navigation, a robot collects environmental information. A robot empirically memorizes locations of high risk due to the abrupt appearance of dynamic obstacles. After collecting sufficient data, a robot navigates in high speed in safe regions. This fact implies that the robot accumulates location dependent environmental information and the robot exploits its experiences in order to improve its navigation performance. This paper proposes a computational scheme how a robot can distinguish regions of high risk. Then, we focus on velocity control in order to achieve high speed navigation. The proposed scheme is experimentally tested in real office building. The experimental results clearly show that the proposed scheme is useful for improving a performance of autonomous navigation. Although the scope of this paper is limited to the velocity control in order to deal with unexpected obstacles, this paper points out a new direction towards the intelligent behavior control of autonomous robots based on the robot's experience.

  • PDF

Development of Tele-operation Interface and Stable Navigation Strategy for Humanoid Robot Driving (휴머노이드 로봇의 안전한 차량 주행 전략 및 원격 제어 인터페이스 개발)

  • Shin, Seho;Kim, Minsung;Ahn, Joonwoo;Kim, Sanghyun;Park, Jaeheung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.904-911
    • /
    • 2016
  • This paper presents a novel driving system by the humanoid robot to drive a vehicle in disaster response situations. To enhance robot's capability for substituting human activities in responding to natural and man-made disaster, the one of prerequisite skills for the rescue robot is the mounted mobility to maneuver a vehicle safely in disaster site. Therefore, our driving system for the humanoid is developed in order to steer a vehicle through unknown obstacles even under poor communication conditions such as time-delay and black-out. Especially, the proposed system includes a tele-manipulation interface and stable navigation strategies. First, we propose a new type of path estimation method to overcome limited communication. Second, we establish navigation strategies when the operator cannot recognize obstacles based on Dynamic Window Approach. The effectiveness of the proposed developments is verified through simulation and experiments, which demonstrate suitable system for driving a vehicle in disaster response.