• Title/Summary/Keyword: Dynamic Inversion

Search Result 109, Processing Time 0.022 seconds

Synergic identification of prestress force and moving load on prestressed concrete beam based on virtual distortion method

  • Xiang, Ziru;Chan, Tommy H.T.;Thambiratnam, David P.;Nguyen, Theanh
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.917-933
    • /
    • 2016
  • In a prestressed concrete bridge, the magnitude of the prestress force (PF) decreases with time. This unexpected loss can cause failure of a bridge which makes prestress force identification (PFI) critical to evaluate bridge safety. However, it has been difficult to identify the PF non-destructively. Although some research has shown the feasibility of vibration based methods in PFI, the requirement of having a determinate exciting force in these methods hinders applications onto in-service bridges. Ideally, it will be efficient if the normal traffic could be treated as an excitation, but the load caused by vehicles is difficult to measure. Hence it prompts the need to investigate whether PF and moving load could be identified together. This paper presents a synergic identification method to determine PF and moving load applied on a simply supported prestressed concrete beam via the dynamic responses caused by this unknown moving load. This method consists of three parts: (i) the PF is transformed into an external pseudo-load localized in each beam element via virtual distortion method (VDM); (ii) then these pseudo-loads are identified simultaneously with the moving load via Duhamel Integral; (iii) the time consuming problem during the inversion of Duhamel Integral is overcome by the load-shape function (LSF). The method is examined against different cases of PFs, vehicle speeds and noise levels by means of simulations. Results show that this method attains a good degree of accuracy and efficiency, as well as robustness to noise.

Extended Slip-Weakening Model and Inference of Rupture Velocity (Slip-Weakening 모델의 확장과 단층 파열속도의 추정)

  • Choi, Hang;Yoon, Byung-Ick
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.219-232
    • /
    • 2020
  • The slip-weakening model developed by Ohnaka and Yamashita is extended over the breakdown zone by equating the scaling relationships for the breakdown zone and the whole rupture area. For the extension, the study uses the relationship between rupture velocity and radiation efficiency, which was derived in the theory of linear elastic fracture mechanics, and the definition of fmax given in the specific barrier model proposed by Papageorgiou and Aki. The results clearly show that the extended scaling relationship is governed by the ratio of rupture velocity to S wave velocity, and the velocity ratio can be determined by the ratio of characteristic frequencies of a Fourier amplitude spectrum, which are corner frequency, fc, and source-controlled cut-off frequency, fmax, or vice versa. The derived relationship is tested by using the characteristic frequencies extracted from previous studies of more than 130 shallow crustal events (focal depth less than 25 km, MW 3.0~7.5) that occurred in Japan. Under the assumption of a dynamic similarity, the rupture velocity estimated from fmax/fc and the modified integral timescale give quite similar scale-dependence of the rupture area to that given by Kanamori and Anderson. Also, the results for large earthquakes show good agreement to the values from a kinematic inversion in previous studies. The test results also indicate the unavailability of the spectral self-similarity proposed by Aki because of the scale-dependent rupture velocity and the rupture velocity-dependent fmax/fc; however, the results do support the local similarity asserted by Ohnaka. It is also remarkable that the relationship between the rupture velocity and fmax/fc is quite similar to Kolmogorov's hypothesis on a similarity in the theory of isotropic turbulence.

A Case Study of Snowfall Event over Yeongdong Region on March 1-2, 2021 (2021년 3월 1-2일 영동지역 강설 사례 연구)

  • Bo-Yeong Ahn;Byunghwan Lim
    • Journal of the Korean earth science society
    • /
    • v.44 no.2
    • /
    • pp.119-134
    • /
    • 2023
  • The synoptic, thermodynamic, and dynamic characteristics of a snowfall event that occurred in the Yeongdong region on March 1-2, 2021, were investigated. Surface weather charts, ERA5 reanalysis data, rawinsonde data, GK-2A satellite data, and WISSDOM data were used for analysis. The snow depth, exceeding 10 cm, was observed at four weather stations during the analysis period. The maximum snow depth (37.4 cm) occurred at Bukgangneung. According to the analysis of the weather charts, old and dry air was trapped within relatively warm, humid air in the upper atmosphere over the East Sea and adjacent Yeongdong region. This caused unstable atmospheric conditions that led to developing convective clouds and snowfall over Bukgangneung. In particular, based on the thermodynamic and kinematic vertical analysis, we suggest that strong winds attributable to the vertical gradient of potential temperature in the low layer and the development of convective instability due to cold advection played a significant role in the occurrence of snowfall in the Yeongdong region. These results were confirmed from the vertical analysis of the rawinsonde data.

INTRINSIC NMR ISOTOPE SHIFTS OF CYCLOOCTANONE AT LOW TEMPERATURE (저온에서의 싸이클로옥타논에 대한 고유동위원소 효과)

  • Jung, Miewon
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.213-224
    • /
    • 1994
  • Several isotopomers of cyclooctanone were prepared by selective deuterium substitution. Intrinsic isotope effects on $^{13}C$ NMR chemical shifts of these isotopomers were investigated systematically at low temperature. These istope effects were discussed in relation to the preferred boat-chair conformation of cyclooctanone. Deuterium isotope effects on NMR chemical shifts have been known for a long time. Especially in a conformationally mobile molecule, isotope perturbation could affect NMR signals through a combination of isotope effects on equilibria and intrinsic effects. The distinction between intrinsic and nonintrinsic effects is quite difficult at ambient temperature due to involvement of both equilibrium and intrinsic isotope effects. However if equilibria between possible conformers of cyclooctanone are slowed down enough on the NMR time scale by lowering temperature, it should be possible to measure intrinsic isotope shifts from the separated signals at low temperature. $^{13}C$ NMR has been successfully utilized in the study on molecular conformation in solution when one deals with stable conformers or molecules were rapid interconversion occurs at ambient temperature. The study of dynamic processes in general requires analysis of spectra at several temperature. Anet et al. did $^1H$ NMR study of cyclooctanone at low temperature to freeze out a stable conformation, but were not able initially to deduce which conformation was stable because of the complexity of alkyl region in the $^1H$ NMR spectrum. They also reported the $^1H$ and $^{13}C$ NMR spectra of the $C_9-C_{16}$ cycloalkanones with changing temperature from $-80^{\circ}C$ to $-170^{\circ}C$, but they did not report a variable temperature $^{13}C$ NMR study of cyclooctanone. For the analysis of the intrinsic isotope effect with relation to cylooctanone conformation, $^{13}C$ NMR spectra are obtained in the present work at low temperatures (up to $-150^{\circ}C$) in order to find the chemical shifts at the temperature at which the dynamic process can be "frozen-out" on the NMR time scale and cyclooctanone can be observed as a stable conformation. Both the ring inversion and pseudorotational processes must be "frozen-out" in order to see separate resonances for all eight carbons in cyclooctanone. In contrast to $^1H$ spectra, slowing down just the ring inversion process has no apparent effects on the $^{13}C$ spectra because exchange of environments within the pairs of methylene carbons can still occur by the pseudorotational process. Several isotopomers of cyclooctanone were prepared by selective deuterium substitution (fig. 1) : complete deuterium labeling at C-2 and C-8 positions gave cyclooctanone-2, 2, 8, $8-D_4$ : complete labeling at C-2 and C-7 positions afforded the 2, 2, 7, $7-D_4$ isotopomer : di-deuteration at C-3 gave the 3, $3-D_2$ isotopomer : mono-deuteration provided cyclooctanone-2-D, 4-D and 5-D isotopomers : and partial deuteration on the C-2 and C-8 position, with a chiral and difunctional case catalyst, gave the trans-2, $8-D_2$ isotopomer. These isotopomer were investigated systematically in relation with cyclooctanone conformation and intrinsic isotope effects on $^{13}C$ NMR chemical shifts at low temperature. The determination of the intrinsic effects could help in the analysis of the more complex effects at higher temperature. For quantitative analysis of intrinsic isotope effects, the $^{13}C$ NMR spectrum has been obtained for a mixture of the labeled and unlabeled compounds because the signal separations are very small.

  • PDF

Sasang Constitution Classification related to an aspect of distribution GCM(General Coordinative Manipulation) Body Type and Experimental Study based on the character of Static Posture and Dynamic Hyper/Hypo-mobility Pattern (사상의학의 4체질 분류에 따른 각 체질별 전신조정술 체형분포 양상과 그에 따른 정적 자세특성 및 동적 운동증감 양상에 관한 실증적 연구)

  • Moon, Sang-Eon;Joe, Hyun-Rae;Oh, Chang-Sun;Kim, Sung-Hyun
    • The Journal of Korean Physical Therapy
    • /
    • v.17 no.4
    • /
    • pp.505-517
    • /
    • 2005
  • The Purposes of this study were to find complementary connectible new factors that analyzed correlation relate of Sasang Constitution and GCM Body Type in Static Posture and Dynamic Hyper/Hypo-mobility Pattern. Method of this study was asymtomatic volunteers 232(unmarried man and women), conducted from September 1 to December 31. In this main study progressing step diagnosised first, Constitution of Sasang medicine after being classified into four groups of Soyangin, Taeumin, Soeumin, Taeyangin diagnosis of GCM Body Type and progressed that related Static Posture and Dynamic Hyper/Hypo mobility Pattern. The results are as follows. Distribution of Sasang Medicine Constitution proved to be Taeyangin 13, Soyangin 66, Taeumin 67, Soeumin 86 respectively. Distribution of GCM Body Type proved I Body Type 72(31.0%), II Body Type 54(23.3%), III Body Type 89(38.4%), IV Body Type 17(7.3%). The distribution of Sasang Constitution according to GCM Body Type was that; I Body Type was distributed in the order Soeumin 34.7%(25), Taeumin 31.9%(23), Soyangin 30.6%(22), Soeumin 34.7%(25) is the most people. II Body Type was distribution of in the order Soeumin 42.6%(23), Soyangin 5.9%(14), Taeumin 24.1%(13), Soeumin 42.6%(23) is the most people. III Body Type was distribution of in the order Soeumin 37.1%(33), Taeumin 30.3%(27), Soyangin 28.1%(25), Soeumin 37.1% is the most people. IV Body Type proved high distribution each of Soeumin 29.4%(5) and Soyangin 29.4%(5). In case of main left side posture character of spine and limbs about I Body Type 72 persons with left scapular and ilium forward tilted pattern proved in the order high distribution iliac crest thigh and scapular high 70(97.2%), gluteal fold high and scapular abduction 69(95.8%), lumbar scoliosis 65(90.3%). Also, in case of right side posture character proved in the order high distribution deep gluteal fold 69(95.8%), umbilical deviation 68(94.4%). Incase of main left side posture character of spine and limbs about n Body Type 54 persons proved in the: order high distribution knee hyperextension 50(92.6%), shoulder deviation 49(90.7%) etc. Also, in case of right side posture character proved in the order high distribution pelvic deviation 53(98.1%), iliac crest thigh 52(96.3%), hip flexion and ankle inversion 51(94.4%) etc. In case of main left side posture character of spine and limbs about III Body Type 89 persons proved in the order high distribution shoulder deviation 87(97.8%), scapular abduction 86(96.6%), scapular high 85(95.5%) etc. And in case of right side posture character proved in the order high distribution pelvic deviation and iliac crest thigh 86(96.6%) etc. In case of main left side posture character of spine and limbs about IV Body Type 17 persons proved in the order high distribution pelvic deviation, lumbar sciliosis and lumbar lordosis increase 15(88.2%) etc. Also, in case of right side posture character proved in the order high distribution wrist dorsiflexion 16(94.1%), thickened achilles tendon etc.

  • PDF

Pose Transformation of a Frontal Face Image by Invertible Meshwarp Algorithm (역전가능 메쉬워프 알고리즘에 의한 정면 얼굴 영상의 포즈 변형)

  • 오승택;전병환
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.1_2
    • /
    • pp.153-163
    • /
    • 2003
  • In this paper, we propose a new technique of image based rendering(IBR) for the pose transformation of a face by using only a frontal face image and its mesh without a three-dimensional model. To substitute the 3D geometric model, first, we make up a standard mesh set of a certain person for several face sides ; front. left, right, half-left and half-right sides. For the given person, we compose only the frontal mesh of the frontal face image to be transformed. The other mesh is automatically generated based on the standard mesh set. And then, the frontal face image is geometrically transformed to give different view by using Invertible Meshwarp Algorithm, which is improved to tolerate the overlap or inversion of neighbor vertexes in the mesh. The same warping algorithm is used to generate the opening or closing effect of both eyes and a mouth. To evaluate the transformation performance, we capture dynamic images from 10 persons rotating their heads horizontally. And we measure the location error of 14 main features between the corresponding original and transformed facial images. That is, the average difference is calculated between the distances from the center of both eyes to each feature point for the corresponding original and transformed images. As a result, the average error in feature location is about 7.0% of the distance from the center of both eyes to the center of a mouth.

Elastic Wave Propagation in Nuclear Power Plant Containment Building Walls Considering Liner Plate and Concrete Cavity (라이너 플레이트 및 콘크리트 공동을 고려한 원전 격납건물 벽체의 탄성파 전파 해석)

  • Kim, Eunyoung;Kim, Boyoung;Kang, Jun Won;Lee, Hongpyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.167-174
    • /
    • 2021
  • Recent investigation into the integrity of nuclear containment buildings has highlighted the importance of developing an elaborate diagnostic method to evaluate the distribution and size of cavities inside concrete walls. As part of developing such a method, this paper presents a finite element approach to modeling elastic waves propagating in the containment building walls of a nuclear power plant. We introduce a perfectly matched layer (PML) wave-absorbing boundary to limit the large-scale nuclear containment wall to the region of interest. The formulation results in a semi-discrete form with symmetric damping and stiffness matrices. The transient elastic wave equations for a mixed unsplit-field PML were solved for displacement and stresses in the time domain. Numerical results show that the sensitivity of displacement, velocity, acceleration, and stresses is large depending on the size and location of the cavity. The dynamic response of the wall slightly differs depending on the existence of the containment liner plate. The results of this study can be applied to a full-waveform inversion approach for characterizing cavities inside a containment wall.

Development and Application of Penetration Type Field Shear Wave Apparatus (관입형 현장 전단파 측정장치의 개발 및 적용)

  • Lee, Jong-Sub;Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Kim, Hyung-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.67-76
    • /
    • 2006
  • The reasonable assessment of the shear stiffness of a dredged soft ground and soft clay is difficult due to the soil disturbance. This study addresses the development and application of a new in-situ shear wave measuring apparatus (field velocity probe: FVP), which overcomes several of the limitations of conventional methods. Design concerns of this new apparatus include the disturbance of soils, cross-talking between transducers, electromagnetic coupling between cables, self acoustic insulation, the constant travel distance of S-wave, the rotation of the transducer, directly transmitted wave through a frame from transducer to transducer, and protection of the transducer and the cable. These concerns are effectively eliminated by continuous improvements through performing field and laboratory tests. The shear wave velocity of the FVP is simply calculated, without any inversion process, by using the travel distance and the first arrival time. The developed FVP Is tested in soil up to 30m in depth. The experimental results show that the FVP can produce every detailed shear wave velocity profiles in sand and clay layers. In addition, the shear wave velocity at the tested site correlates well with the cone tip resistance. This study suggests that the FVP may be an effective technique for measuring the shear wave velocity in the field to assess dynamic soil properties in soft ground.

Histological Validation of Cardiovascular Magnetic Resonance T1 Mapping for Assessing the Evolution of Myocardial Injury in Myocardial Infarction: An Experimental Study

  • Lu Zhang;Zhi-gang Yang;Huayan Xu;Meng-xi Yang;Rong Xu;Lin Chen;Ran Sun;Tianyu Miao;Jichun Zhao;Xiaoyue Zhou;Chuan Fu;Yingkun Guo
    • Korean Journal of Radiology
    • /
    • v.21 no.12
    • /
    • pp.1294-1304
    • /
    • 2020
  • Objective: To determine whether T1 mapping could monitor the dynamic changes of injury in myocardial infarction (MI) and be histologically validated. Materials and Methods: In 22 pigs, MI was induced by ligating the left anterior descending artery and they underwent serial cardiovascular magnetic resonance examinations with modified Look-Locker inversion T1 mapping and extracellular volume (ECV) computation in acute (within 24 hours, n = 22), subacute (7 days, n = 13), and chronic (3 months, n = 7) phases of MI. Masson's trichrome staining was performed for histological ECV calculation. Myocardial native T1 and ECV were obtained by region of interest measurement in infarcted, peri-infarct, and remote myocardium. Results: Native T1 and ECV in peri-infarct myocardium differed from remote myocardium in acute (1181 ± 62 ms vs. 1113 ± 64 ms, p = 0.002; 24 ± 4% vs. 19 ± 4%, p = 0.031) and subacute phases (1264 ± 41 ms vs. 1171 ± 56 ms, p < 0.001; 27 ± 4% vs. 22 ± 2%, p = 0.009) but not in chronic phase (1157 ± 57 ms vs. 1120 ± 54 ms, p = 0.934; 23 ± 2% vs. 20 ± 1%, p = 0.109). From acute to chronic MI, infarcted native T1 peaked in subacute phase (1275 ± 63 ms vs. 1637 ± 123 ms vs. 1471 ± 98 ms, p < 0.001), while ECV progressively increased with time (35 ± 7% vs. 46 ± 6% vs. 52 ± 4%, p < 0.001). Native T1 correlated well with histological findings (R2 = 0.65 to 0.89, all p < 0.001) so did ECV (R2 = 0.73 to 0.94, all p < 0.001). Conclusion: T1 mapping allows the quantitative assessment of injury in MI and the noninvasive monitoring of tissue injury evolution, which correlates well with histological findings.