• Title/Summary/Keyword: Dynamic Heuristic

Search Result 205, Processing Time 0.019 seconds

Conjunctive Boolean Query Optimization based on Join Sequence Separability in Information Retrieval Systems (정보검색시스템에서 조인 시퀀스 분리성 기반 논리곱 불리언 질의 최적화)

  • 박병권;한욱신;황규영
    • Journal of KIISE:Databases
    • /
    • v.31 no.4
    • /
    • pp.395-408
    • /
    • 2004
  • A conjunctive Boolean text query refers to a query that searches for tort documents containing all of the specified keywords, and is the most frequently used query form in information retrieval systems. Typically, the query specifies a long list of keywords for better precision, and in this case, the order of keyword processing has a significant impact on the query speed. Currently known approaches to this ordering are based on heuristics and, therefore, cannot guarantee an optimal ordering. We can use a systematic approach by leveraging a database query processing algorithm like the dynamic programming, but it is not suitable for a text query with a typically long list of keywords because of the algorithm's exponential run-time (Ο(n2$^{n-1}$)) for n keywords. Considering these problems, we propose a new approach based on a property called the join sequence separability. This property states that the optimal join sequence is separable into two subsequences of different join methods under a certain condition on the joined relations, and this property enables us to find a globally optimal join sequence in Ο(n2$^{n-1}$). In this paper we describe the property formally, present an optimization algorithm based on the property, prove that the algorithm finds an optimal join sequence, and validate our approach through simulation using an analytic cost model. Comparison with the heuristic text query optimization approaches shows a maximum of 100 times faster query processing, and comparison with the dynamic programming approach shows exponentially faster query optimization (e.g., 600 times for a 10-keyword query).

Dynamic Economic Load Dispatch Problem Applying Valve-Point Balance and Swap Optimization Method (밸브지점 균형과 교환 최적화 방법을 적용한 동적경제급전문제)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.253-262
    • /
    • 2016
  • This paper proposes a balance-swap method for the dynamic economic load dispatch problem. Based on the premise that all generators shall be operated at valve-points, the proposed algorithm initially sets the maximum generation power at $P_i{\leftarrow}P_i^{max}$. As for generator i with $_{max}c_i$, which is the maximum operating cost $c_i=\frac{F(P_i)-F(P_{iv_k})}{(P_i-P_{iv_k})}$ produced when the generation power of each generator is reduced to the valve-point $v_k$, the algorithm reduces i's generation power down to $P_{iv_k}$, the valve-point operating cost. When ${\Sigma}P_i-P_d$ > 0, it reduces the generation power of a generator with $_{max}c_i$ of $c_i=F(P_i)-F(P_i-1)$ to $P_i{\leftarrow}P_i-1$ so as to restore the equilibrium ${\Sigma}P_i=P_d$. The algorithm subsequently optimizes by employing an adult-step method in which power in the range of $_{min}\{_{max}(P_i-P_i^{min}),\;_{max}(P_i^{max}-P_i)\}$>${\alpha}{\geq}10$ is reduced by 10; a baby step method in which power in the range of 10>${\alpha}{\geq}1$ is reduced by 1; and a swap method for $_{max}[F(P_i)-F(P_i-{\alpha})]$>$_{min}[F(P_j+{\alpha})-F(P_j)]$, $i{\neq}j$ of $P_i=P_i{\pm}{\alpha}$, in which power is swapped to $P_i=P_i-{\alpha}$, $P_j=P_j+{\alpha}$. It finally executes minute swap process for ${\alpha}=\text{0.1, 0.01, 0.001, 0.0001}$. When applied to various experimental cases of the dynamic economic load dispatch problems, the proposed algorithm has proved to maximize economic benefits by significantly reducing the optimal operating cost of the extant Heuristic algorithm.

Development of Intelligent ATP System Using Genetic Algorithm (유전 알고리듬을 적용한 지능형 ATP 시스템 개발)

  • Kim, Tai-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.131-145
    • /
    • 2010
  • The framework for making a coordinated decision for large-scale facilities has become an important issue in supply chain(SC) management research. The competitive business environment requires companies to continuously search for the ways to achieve high efficiency and lower operational costs. In the areas of production/distribution planning, many researchers and practitioners have developedand evaluated the deterministic models to coordinate important and interrelated logistic decisions such as capacity management, inventory allocation, and vehicle routing. They initially have investigated the various process of SC separately and later become more interested in such problems encompassing the whole SC system. The accurate quotation of ATP(Available-To-Promise) plays a very important role in enhancing customer satisfaction and fill rate maximization. The complexity for intelligent manufacturing system, which includes all the linkages among procurement, production, and distribution, makes the accurate quotation of ATP be a quite difficult job. In addition to, many researchers assumed ATP model with integer time. However, in industry practices, integer times are very rare and the model developed using integer times is therefore approximating the real system. Various alternative models for an ATP system with time lags have been developed and evaluated. In most cases, these models have assumed that the time lags are integer multiples of a unit time grid. However, integer time lags are very rare in practices, and therefore models developed using integer time lags only approximate real systems. The differences occurring by this approximation frequently result in significant accuracy degradations. To introduce the ATP model with time lags, we first introduce the dynamic production function. Hackman and Leachman's dynamic production function in initiated research directly related to the topic of this paper. They propose a modeling framework for a system with non-integer time lags and show how to apply the framework to a variety of systems including continues time series, manufacturing resource planning and critical path method. Their formulation requires no additional variables or constraints and is capable of representing real world systems more accurately. Previously, to cope with non-integer time lags, they usually model a concerned system either by rounding lags to the nearest integers or by subdividing the time grid to make the lags become integer multiples of the grid. But each approach has a critical weakness: the first approach underestimates, potentially leading to infeasibilities or overestimates lead times, potentially resulting in excessive work-inprocesses. The second approach drastically inflates the problem size. We consider an optimized ATP system with non-integer time lag in supply chain management. We focus on a worldwide headquarter, distribution centers, and manufacturing facilities are globally networked. We develop a mixed integer programming(MIP) model for ATP process, which has the definition of required data flow. The illustrative ATP module shows the proposed system is largely affected inSCM. The system we are concerned is composed of a multiple production facility with multiple products, multiple distribution centers and multiple customers. For the system, we consider an ATP scheduling and capacity allocationproblem. In this study, we proposed the model for the ATP system in SCM using the dynamic production function considering the non-integer time lags. The model is developed under the framework suitable for the non-integer lags and, therefore, is more accurate than the models we usually encounter. We developed intelligent ATP System for this model using genetic algorithm. We focus on a capacitated production planning and capacity allocation problem, develop a mixed integer programming model, and propose an efficient heuristic procedure using an evolutionary system to solve it efficiently. This method makes it possible for the population to reach the approximate solution easily. Moreover, we designed and utilized a representation scheme that allows the proposed models to represent real variables. The proposed regeneration procedures, which evaluate each infeasible chromosome, makes the solutions converge to the optimum quickly.

Ramp Activity Expert System for Scheduling and Co-ordination (공항의 계류장 관리 스케줄링 및 조정을 위한 전문가시스템)

  • Jo, Geun-Sik;Yang, Jong-Yoon
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.1
    • /
    • pp.61-67
    • /
    • 1998
  • In this paper, we have described the Ramp Activity Coordination Expert System (RACES) which can solve aircraft parking problems. RACES includes a knowledge-based scheduling problem which assigns every daily arriving and departing flight to the gates and remote spots with the domain specific knowledge and heuristics acquired from human experts. RACES processes complex scheduling problem such as dynamic inter-relations among the characteristics of remote spots/gates and aircraft with various other constraints, for example, custome and ground handling factors at an airport. By user-driven modeling for end users and knowledge-driven near optimal scheduling acquired from human experts, RACES can produce parking schedules of aircraft in about 20 seconds for about 400 daily flights, whereas it normally takes about 4 to 5 hours by human experts. Scheduling results in the form of Gantt charts produced by the RACES are also accepted by the domain experts. RACES is also designed to deal with the partial adjustment of the schedule when unexpected events occur. After daily scheduling is completed, the messages for aircraft changes and delay messages are reflected and updated into the schedule according to the knowledge of the domain experts. By analyzing the knowledge model of the domain expert, the reactive scheduling steps are effectively represented as rules and the scenarios of the Graphic User Interfaces (GUI) are designed. Since the modification of the aircraft dispositions such as aircraft changes and cancellations of flights are reflected to the current schedule, the modification should be notified to RACES from the mainframe for the reactive scheduling. The adjustments of the schedule are made semi-automatically by RACES since there are many irregularities in dealing with the partial rescheduling.

  • PDF

State-Aware Re-configuration Model for Multi-Radio Wireless Mesh Networks

  • Zakaria, Omar M.;Hashim, Aisha-Hassan Abdalla;Hassan, Wan Haslina;Khalifa, Othman Omran;Azram, Mohammad;Goudarzi, Shidrokh;Jivanadham, Lalitha Bhavani;Zareei, Mahdi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.146-170
    • /
    • 2017
  • Joint channel assignment and routing is a well-known problem in multi-radio wireless mesh networks for which optimal configurations is required to optimize the overall throughput and fairness. However, other objectives need to be considered in order to provide a high quality service to network users when it deployed with high traffic dynamic. In this paper, we propose a re-configuration optimization model that optimizes the network throughput in addition to reducing the disruption to the mesh clients' traffic due to the re-configuration process. In this multi-objective optimization model, four objective functions are proposed to be minimized namely maximum link-channel utilization, network average contention, channel re-assignment cost, and re-routing cost. The latter two objectives focus on reducing the re-configuration overhead. This is to reduce the amount of disrupted traffic due to the channel switching and path re-routing resulted from applying the new configuration. In order to adapt to traffic dynamics in the network which might be caused by many factors i.e. users' mobility, a centralized heuristic re-configuration algorithm called State-Aware Joint Routing and Channel Assignment (SA-JRCA) is proposed in this research based on our re-configuration model. The proposed algorithm re-assigns channels to radios and re-configures flows' routes with aim of achieving a tradeoff between maximizing the network throughput and minimizing the re-configuration overhead. The ns-2 simulator is used as simulation tool and various metrics are evaluated. These metrics include channel-link utilization, channel re-assignment cost, re-routing cost, throughput, and delay. Simulation results show the good performance of SA-JRCA in term of packet delivery ratio, aggregated throughput and re-configuration overhead. It also shows higher stability to the traffic variation in comparison with other compared algorithms which suffer from performance degradation when high traffic dynamics is applied.