• Title/Summary/Keyword: Dynamic Explicit Method

Search Result 182, Processing Time 0.027 seconds

The Study of Impact Analysis about Inertia Measure Unit of High Speed along Impact curve (충격곡선에 따른 고속발사체 내부 관성측정장치에 미치는 충격의 수치해석적 연구)

  • Kang, Minkyu;Tak, Seungmin;Park, Dongjin;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.4
    • /
    • pp.29-33
    • /
    • 2012
  • This paper is focusing on the difference from experiment result and method through dynamic loaded from impact analysis about inertia measure unit of high speed projectile. At Inertia measure unit dynamic load is applied when the high speed projectile is operated by impact to inside. it is necessary to design inertia measure unit enduring from external effect with operating environment. Investigation of material deformation with high strain speed is performed for military purpose, and still concerned to many scientist. From this study, this paper will prove of impact analysis result through comparing with experiment result and method when applied dynamic load.

PID Learning Controller for Multivariable System with Dynamic Friction (동적 마찰이 있는 다변수 시스템에서의 PID 학습 제어)

  • Chung, Byeong-Mook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.57-64
    • /
    • 2007
  • There have been many researches for optimal controllers in multivariable systems, and they generally use accurate linear models of the plant dynamics. Real systems, however, contain nonlinearities and high-order dynamics that may be difficult to model using conventional techniques. Therefore, it is necessary a PID gain tuning method without explicit modeling for the multivariable plant dynamics. The PID tuning method utilizes the sign of Jacobian and gradient descent techniques to iteratively reduce the error-related objective function. This paper, especially, focuses on the role of I-controller when there is a steady state error. However, it is not easy to tune I-gain unlike P- and D-gain because I-controller is mainly operated in the steady state. Simulations for an overhead crane system with dynamic friction show that the proposed PID-LC algorithm improves controller performance, even in the steady state error.

Structural and Mechanical Systems Subjected to Constraints

  • Lee, Eun-Taik;Chung, Heon-Soo;Park, Sang-Yeol
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1891-1899
    • /
    • 2004
  • The characteristics of dynamic systems subjected to multiple linear constraints are determined by considering the constrained effects. Although there have been many researches to investigate the dynamic characteristics of constrained systems, most of them depend on numerical analysis like Lagrange multipliers method. In 1992, Udwadia and Kalaba presented an explicit form to describe the motion for constrained discrete systems. Starting from the method, this study determines the dynamic characteristics of the systems to have positive semidefinite mass matrix and the continuous systems. And this study presents a closed form to calculate frequency response matrix for constrained systems subjected to harmonic forces. The proposed methods that do not depend on any numerical schemes take more generalized forms than other research results.

A Parameter Study for Static and Dynamic Denting

  • Jung, Dong-Won;Worswick, M.J.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.2009-2020
    • /
    • 2004
  • A parametric study of the factors controlling static and dynamic denting, as well as local stiffness, has been made on simplified panels of different sizes, curvatures, thicknesses and strengths. Analyses have been performed using the finite element method to predict dent resistance and panel stiffness. A parametric approach is used with finite element models of simplified panels. Two sizes of panels with square plan dimensions and a wide range of curvatures are analysed for several combinations of material thickness and strength, all representative of auto-motive closure panels. Analysis was performed using the implicit finite element code, LS-NIKE, and the explicit dynamic code, LS-DYNA for the static and dynamic cases, respectively. Panel dent resistance and stiffness behaviour are shown to be complex phenomena and strongly interrelated. Factors favouring improved dent resistance include increased yield strength and panel thickness. Panel stiffness also increases with thickness and with higher curvatures but decreases with size and very low curvatures. Conditions for best dynamic and static dent performance are shown to be inherently in conflict ; that is, panels with low stiffness tend to perform well under impact loading but demonstrate inferior static dent performance. Stiffer panels are prone to larger dynamic dents due to higher contact forces but exhibit good static performance through increased resistance to oil canning.

A Transient Response Analysis in the State-space Applying the Average Velocity Concept (평균속도 개념을 적용한 상태공간에서의 과도응답해석)

  • 김병옥;김영철;김영춘;이안성
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.424-431
    • /
    • 2004
  • An implicit direct-time integration method for obtaining transient responses of general dynamic systems is described. The conventional Newmark method cannot be directly applied to state-space first-order differential equations, which contain no explicit acceleration terms. The method proposed here is the state-space Newmark method that incorporates the average velocity concept, and can be applied to an analysis of general dynamic systems that are expressed by state-space first-order differential equations. It is also readily coded into a program. Stability and accuracy analyses indicate that the method is numerically unconditionally stable like the conventional Newmark method, and has a period error of 2nd-order accuracy for small damping and 4th-order for large damping and an amplitude error of 2nd-order, regardless of damping. In addition, its utility and validity are confirmed by two application examples. The results suggest that the proposed state-space Newmark method based on average velocity be generally applied to the analysis of transient responses of general dynamic systems with a high degree of reliability with respect to stability and accuracy.

Reliability-based stochastic finite element using the explicit probability density function

  • Rezan Chobdarian;Azad Yazdani;Hooshang Dabbagh;Mohammad-Rashid Salimi
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.349-359
    • /
    • 2023
  • This paper presents a technique for determining the optimal number of elements in stochastic finite element analysis based on reliability analysis. Using the change-of-variable perturbation stochastic finite element approach, the probability density function of the dynamic responses of stochastic structures is explicitly determined. This method combines the perturbation stochastic finite element method with the change-of-variable technique into a united model. To further examine the relationships between the random fields, discretization of the random field parameters, such as the variance function and the scale of fluctuation, is also performed. Accordingly, the reliability index is calculated based on the explicit probability density function of responses with Gaussian or non-Gaussian random fields in any number of elements corresponding to the random field discretization. The numerical examples illustrate the effectiveness of the proposed method for a one-dimensional cantilever reinforced concrete column and a two-dimensional steel plate shear wall. The benefit of this method is that the probability density function of responses can be obtained explicitly without the use simulation techniques. Any type of random variable with any statistical distribution can be incorporated into the calculations, regardless of the restrictions imposed by the type of statistical distribution of random variables. Consequently, this method can be utilized as a suitable guideline for the efficient implementation of stochastic finite element analysis of structures, regardless of the statistical distribution of random variables.

Dynamic Characteristics of Revolution Shells (회전쉘의 동적 특성에 관한 연구)

  • Park, Sung-Jin
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.123-140
    • /
    • 2014
  • This paper proposes a simple and effective method for determining the dynamic characteristics of revolution shells. This is a weighted residual method in which the collocation points are taken at the roots of orthogonal polynomial. In this paper the collocation method is employed to replace a partical differential eqations by a system of ordinary differential equations in time, and the resulting equations are solved by two different numerical methods of time integration : an implicit method and an explicit method. The proposed approach is formulated in some detail. The versatility and accuracy are illustrated through several numerical examples. The method appears to be relatively easy to set up and gives satisfactory results.

Dynamic stiffness matrix of composite box beams

  • Kim, Nam-Il
    • Steel and Composite Structures
    • /
    • v.9 no.5
    • /
    • pp.473-497
    • /
    • 2009
  • For the spatially coupled free vibration analysis of composite box beams resting on elastic foundation under the axial force, the exact solutions are presented by using the power series method based on the homogeneous form of simultaneous ordinary differential equations. The general vibrational theory for the composite box beam with arbitrary lamination is developed by introducing Vlasov°Øs assumption. Next, the equations of motion and force-displacement relationships are derived from the energy principle and explicit expressions for displacement parameters are presented based on power series expansions of displacement components. Finally, the dynamic stiffness matrix is calculated using force-displacement relationships. In addition, the finite element model based on the classical Hermitian interpolation polynomial is presented. To show the performances of the proposed dynamic stiffness matrix of composite box beam, the numerical solutions are presented and compared with the finite element solutions using the Hermitian beam elements and the results from other researchers. Particularly, the effects of the fiber orientation, the axial force, the elastic foundation, and the boundary condition on the vibrational behavior of composite box beam are investigated parametrically. Also the emphasis is given in showing the phenomenon of vibration mode change.

Failure Modeling of Bridge Components Subjected to Blast Loading Part I: Strain Rate-Dependent Damage Model for Concrete

  • Wei, Jun;Quintero, Russ;Galati, Nestore;Nanni, Antonio
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • A dynamic constitutive damage model for reinforced concrete (RC) structures and formulations of blast loading for contact or near-contact charges are considered and adapted from literatures. The model and the formulations are applied to the input parameters needed in commercial finite element method (FEM) codes which is validated by the laboratory blast tests of RC slabs from literature. The results indicate that the dynamic constitutive damage model based on the damage mechanics and the blast loading formulations work well. The framework on the dynamic constitutive damage model and the blast loading equations can therefore be used for the simulation of failure of bridge components in engineering applications.

Evaluation of Dynamic Stability for Precast and Prestressed Wall reinforced by Steel Pipe (강봉으로 보강된 프리캐스트 프리스트레스 옹벽의 동적 안정성 평가)

  • Lee, Il-Wha;Lee, Su-Hyung;Choi, Chan-Yong;Kum, Chang-Jun
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.381-386
    • /
    • 2006
  • The advantages of precast production are fast construction, reduction of labor and insurance of good quality. In recently, the application of the precast production is increased in the earth retaining wall field. This paper presents the results of the numerical modelling that was carried out to evaluate the stability of precast and prestressed earth retaining wall under dynamic train loading. The two-dimensional explicit dynamic finite element method (ABAQUS) was used to carry out the numerical analyses. The train loading to act track is calculated by using the real measured phase angle data. Mainly, the displacement and acceleration of wall structure in time domain analyzed to evaluate the stability under the dynamic train load.

  • PDF