• Title/Summary/Keyword: Dynamic Elastic Modulus

Search Result 273, Processing Time 0.025 seconds

Evaluations of the Acoustics Characteristics of Cellulose Absorbers (셀롤로오즈 흡음재의 음향적 특성 평가)

  • Yeon, Joon-oh;Kim, Kyoung-woo;Yang, Kwan-seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.760-765
    • /
    • 2013
  • Eco-friendly material applied to building would be one of the materials which is must developed for global environmental conservation and reduction of carbon dioxide. For development of eco-friendly material, a cellulose sound-absorbing material has been developed with waste paper through adjustment of various mix proportions. The developed cellulose sound-absorbing material has been tested for its acoustic properties such as acoustic absorptivity and dynamic elastic modulus. The absorptivity was evaluated by developing six samples and using impedance tube and reverberation chamber. As a result of the evaluation, 0.64(NRC) was secured in absorptivity and $4.7MN/m^3$ was indicated in dynamic elastic modulus. Also, for practical use of developed sound-absorbing material as inner heartwood in drywall, comparison test of sound reduction index was performed with existing glass wool sound-absorbing material and constructed drywall of gybsum board. The results have shown 55dB(Rw) of sound reduction index in glass-wool wall and 46dB(Rw) in cellulose.

  • PDF

Analytical Studies for Estimating Soil Properties from the SPT Dynamic Signals (SPT 동적신호를 이용한 지반정보 추정에 관한 해석적 연구)

  • 이병식;김영수;김범상
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.423-430
    • /
    • 2002
  • A feasibility of a trial test method was evaluated analytically, in which the elastic modulus of a soil deposit was tried to estimate by analyzing dynamic signals measured during conducting the SPT. If there existed a reliable relationship between the impedance ratio of a rod to a soil and the amplitude ratio of a reflected to an incident wave signal at the tip of steel rod contacting the soil surface, it was expected that one could determine the impedance of soil, and then roughly estimate the elastic modulus from the impedance. For a simple rod-soil system, the existence of the relevant relationship was verified in this study by analyzing computed wave signals propagating up and down through the rod. On the basis of these results, thus, a potential of the test method to practical applications could be seen. However, apparent theoretical shortcomings possessed in this approach were also realized since the soil part had an unconfined contact area where contacted with the rod. Therefore, it was concluded that further studies needed to be conducted, in which the reliable theoretical relationship between the impedance and the amplitude ratio as well as the effective contacting soil area contributing to wave reflection should be justified.

  • PDF

The dynamic response of the FGM coated half-plane with hysteretic damping under time harmonic loading

  • Xiao-Min Wang;Liao-Liang Ke;Yue-Sheng Wang
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.95-106
    • /
    • 2023
  • This paper investigates the dynamic response of a functionally graded material (FGM) coated half-plane excited by distributed time harmonic loading. Three types of typical distributed surface loads, including uniform load, Hertz load, and square-root singular load, are considered. The mass density and elastic modulus of the FGM coating are supposed to be described by the exponential function. The material damping is modelled by a linearly hysteretic damping which is expressed by a complex modulus in the time harmonic motion. Using Fourier integral transform technique and numerical integral method, the effects of the excitation frequency, gradient index, damping, and load type on the dynamic stresses and displacements are discussed.

Stochastic dynamic instability response of piezoelectric functionally graded beams supported by elastic foundation

  • Shegokara, Niranjan L.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.4
    • /
    • pp.471-502
    • /
    • 2016
  • This paper presents the dynamic instability analysis of un-damped elastically supported piezoelectric functionally graded (FG) beams subjected to in-plane static and dynamic periodic thermomechanical loadings with uncertain system properties. The elastic foundation model is assumed as one parameter Pasternak foundation with Winkler cubic nonlinearity. The piezoelectric FG beam is subjected to non-uniform temperature distribution with temperature dependent material properties. The Young's modulus and Poison's ratio of ceramic, metal and piezoelectric, density of respective ceramic and metal, volume fraction exponent and foundation parameters are taken as uncertain system properties. The basic nonlinear formulation of the beam is based on higher order shear deformation theory (HSDT) with von-Karman strain kinematics. The governing deterministic static and dynamic random instability equation and regions is solved by Bolotin's approach with Newmark's time integration method combined with first order perturbation technique (FOPT). Typical numerical results in terms of the mean and standard deviation of dynamic instability analysis are presented to examine the effect of slenderness ratios, volume fraction exponents, foundation parameters, amplitude ratios, temperature increments and position of piezoelectric layers by changing the random system properties. The correctness of the present stochastic model is examined by comparing the results with direct Monte Caro simulation (MCS).

Prediction of elastic constants of Timoshenko rectangular beams using the first two bending modes

  • Chen, Hung-Liang (Roger);Leon, Guadalupe
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.657-668
    • /
    • 2021
  • In this study, a relationship between the resonance frequency ratio and Poisson's ratio was proposed that can be used to directly determine the elastic constants. Using this relationship, the frequency ratio between the 1st bending mode and 2nd bending mode for any rectangular Timoshenko beam can be directly estimated and used to determine the elastic constants efficiently. The exact solution of the Timoshenko beam vibration frequency equation under free-free boundary conditions was determined with an accurate shear shape factor. The highest percent difference for the frequency ratio between the theoretical values and the estimated values for all the beam dimensions studied was less than 0.02%. The proposed equations were used to obtain the elastic constants of beams with different material properties and dimensions using the first two measured transverse bending frequencies. Results show that using the equations proposed in this study, the Young's modulus and Poisson's ratio of rectangular Timoshenko beams can be determined more efficiently and accurately than those obtained from industry standards such as ASTM E1876-15 without the need to test the torsional vibration.

Evaluation of Shear Elastic Modulus by Changing Injection Ratio of Grout (그라우트 주입률 변화에 따른 전단탄성계수 평가)

  • Baek, Seungcheol;Lee, Jundae;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.2
    • /
    • pp.51-55
    • /
    • 2013
  • Among various construction methods, deep soil stabilization by chemical method have been widely used in order to improve soft ground. Dynamic variables using ground(such as sand, weathered granite soil and rock) -structure interaction design affected by dynamic load and cyclic load were studied a lot. However, there is something yet to learn about earthquake resistant design regarding reinforced ground by grout. Therefore, in this study using RC test, the correlation between shear strain and shear modulus with change of water content and injection rate in normal portland cement and clay was compared and analyzed by using Ramberg-Osgood model normalization As the result, dynamic coefficient was considerably affected by water content and grout injection rate.

Rheological Properties of Antiphlamine-S® Lotion (안티푸라민-에스® 로션의 레올로지 특성 연구)

  • Kuk, Hoa-Youn;Song, Ki-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.185-199
    • /
    • 2009
  • Using a strain-controlled rheometer [Advanced Rheometric Expansion System (ARES)], the steady shear flow properties and the dynamic viscoelastic properties of $Antiphlamine-S^{(R)}$ lotion have been measured at $20^{\circ}C$ (storage temperature) and $37^{\circ}C$ (body temperature). In this article, the temperature dependence of the linear viscoelastic behavior was firstly reported from the experimental data obtained from a temperature-sweep test. The steady shear flow behavior was secondly reported and then the effect of shear rate on this behavior was discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters. The angular frequency dependence of the linear viscoelastic behavior was nextly explained and quantitatively predicted using a fractional derivative model. Finally, the strain amplitude dependence of the dynamic viscoelastic behavior was discussed in full to elucidate a nonlinear rheological behavior in large amplitude oscillatory shear flow fields. Main findings obtained from this study can be summarized as follows : (1) The linear viscoelastic behavior is almostly independent of temperature over a temperature range of $15{\sim}40^{circ}C$. (2) The steady shear viscosity is sharply decreased as an increase in shear rate, demonstrating a pronounced Non-Newtonian shear-thinning flow behavior. (3) The shear stress tends to approach a limiting constant value as a decrease in shear rate, exhibiting an existence of a yield stress. (4) The Herschel-Bulkley, Mizrahi-Berk and Heinz-Casson models are all applicable and have an equivalent validity to quantitatively describe the steady shear flow behavior of $Antiphlamine-S^{(R)}$ lotion whereas both the Bingham and Casson models do not give a good applicability. (5) In small amplitude oscillatory shear flow fields, the storage modulus is always greater than the loss modulus over an entire range of angular frequencies tested and both moduli show a slight dependence on angular frequency. This means that the linear viscoelastic behavior of $Antiphlamine-S^{(R)}$ lotion is dominated by an elastic nature rather than a viscous feature and that a gel-like structure is present in this system. (6) In large amplitude oscillatory shear flow fields, the storage modulus shows a nonlinear strain-thinning behavior at strain amplitude range larger than 10 % while the loss modulus exhibits a weak strain-overshoot behavior up to a strain amplitude of 50 % beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (7) At sufficiently large strain amplitude range (${\gamma}_0$>100 %), the loss modulus is found to be greater than the storage modulus, indicating that a viscous property becomes superior to an elastic character in large shear deformations.

Analytical Studies for Application of SPT Dynamic Signals to Estimate the Elastic Property of the Soil Deposit (표준관입시험의 동적신호를 이용한 지반 물성치 추정의 해석적 연구)

  • 이병식;김영수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.167-177
    • /
    • 2002
  • A test method has been attempted to estimate the soil stiffness by measuring and analyzing dynamic signals of stress waves reflected at the bottom end of the SPT rod contacting a soil deposit. Before conducting a real size testing, a series of parametric studies were conducted in this paper to examine the applicability and the theoretical adequacy of the test method. As a result of these studies, it has been shown that the most significant influence factor affecting the amplitude ratio of the reflected wave to the incident wave at the rod-soil interface was the variation of soil stiffness. Also, the variation of the amplitude ratio was found to be closely related with the variation of impedance ratio of the soil deposit to the SPT rod. As a result, a potential of the test method could be proved to estimate the impedance and the elastic modulus of the soil deposit interfaced with the SPT rod using the test method.

Evaluation of the Dynamic Characteristics of Rubber Structure under Impact Force (충격하중을 받는 고무구조물의 동특성 평가)

  • Kim, Wan-Doo;Kim, Dong-Jin;Lee, Young-Shin
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.40-48
    • /
    • 2006
  • Mechanical systems with rubber parts have been used widely in industry fields. The evaluation of the physical characteristics of rubber is important in rubber application. Rubber material is useful to machine component for excellent shock absorbing characteristics. The impact characteristics of rubber were examined by experimental and finite element method. The impact test was conducted with a free-drop type impact tester. The ABAQUS/Explicit was used for finite element analysis. In the finite element analysis, elastic modulus of rubber using impact force was used as dynamic modulus, which are measured and predicted with dynamic property test and WLF model. The analysis result was coincided with the experimental results.

THE CHANGE OF THE INITIAL DYNAMIC VISCO-ELASTIC MODULUS OF COMPOSITE RESINS DURING LIGHT POLYMERIZATION (광중합 복합레진의 중합초기 동적 점탄성의 변화)

  • Kim, Min-Ho;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.450-459
    • /
    • 2009
  • The aim of this study was to measure the initial dynamic modulus changes of light cured composites using a custom made rheometer. The custom made rheometer consisted of 3 parts: (1) a measurement unit of parallel plates made of glass rods, (2) an oscillating shear strain generator with a DC motor and a crank mechanism, (3) a stress measurement device using an electromagnetic torque sensor. This instrument could measure a maximum torque of 2Ncm, and the switch of the light-curing unit was synchronized with the rheometer. Six commercial composite resins [Z-100 (Z1), Z-250 (Z2), Z-350 (Z3), DenFil (DF), Tetric Ceram (TC), and Clearfil AP-X (CF)] were investigated. A dynamic oscillating shear test was undertaken with the rheometer. A certain volume ($14.2\;mm^3$) of composite was loaded between the parallel plates, which were made of glass rods (3 mm in diameter). An oscillating shear strain with a frequency of 6 Hz and amplitude of 0.00579 rad was applied to the specimen and the resultant stress was measured. Data acquisition started simultaneously with light curing, and the changes in visco-elasticity of composites were recorded for 10 seconds. The measurements were repeated 5 times for each composite at $25{\pm}0.5^{\circ}C$. Complex shear modulus G*, storage shear modulus G', loss shear modulus G" were calculated from the measured strain-stress curves. Time to reach the complex modulus G* of 10 MPa was determined. The G* and time to reach the G* of 10 MPa of composites were analyzed with One-way ANOVA and Tukey's test ($\alpha$ = 0.05). The results were as follows. 1. The custom made rheometer in this study reliably measured the initial visco-elastic modulus changes of composites during 10 seconds of light curing. 2. In all composites, the development of complex shear modulus G* had a latent period for $1{\sim}2$ seconds immediately after the start of light curing, and then increased rapidly during 10 seconds. 3. In all composites, the storage shear modulus G" increased steeper than the loss shear modulus G" during 10 seconds of light curing. 4. The complex shear modulus of Z1 was the highest, followed by CF, Z2, Z3, TC and DF the lowest. 5. Z1 was the fastest and DF was the slowest in the time to reach the complex shear modulus of 10 MPa.