• Title/Summary/Keyword: Dynamic Complex Stiffness

Search Result 124, Processing Time 0.024 seconds

A Study on Dynamic Response Analysis Algorithm of Plane Lattice Structure (평면격자형 구조물의 동적응답 해석알고리즘에 관한 연구)

  • Moon, D.H.;Kang, H.S.;Choi, M.S.;Kim, Y.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.575-580
    • /
    • 2000
  • Recently it is increased by degrees to construct complex and large lattice structure such as bridge, tower and crane structures. It is very important problem to know dynamic properties of such structures. Authors presented new dynamic response analysis algorithm for rectilinear structure already. This analysis algorithm is combined transfer stiffness coefficient method with Newmark method. Presented method improves the computational accuracy remarkably owing to advantage of the transfer stiffness coefficient method. This paper formulates dynamic response analysis algorithm for plane lattice structure expanding rectilinear structures.

  • PDF

Dynamic Characteristics Analysis of a Machine-Tool Spindle System (공작기계 주축계의 진동특성해석에 관한 연구)

  • Kim, Seok-Il;Gwak, Byeong-Man;Lee, Hu-Sang;Jeong, Jae-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.57-68
    • /
    • 1991
  • In this study, to analyse the dynamic characteristics of a machine-tool spindle system, the spindle is mathematically represented by a Timoshenko beam including the internal damping of beam material, and each bearing by four bearing coefficients; stiffness and damping coefficients in moment and radial directions. And the dynamic compliance of the system is calculated by introducing the transfer matrix method, and the complex modal analysis method has been applied for the modal parameter identification. The influence of the bearing coefficients, material damping factor and bearing span on the dynamic characteristics of the system is parametrically examined.

  • PDF

The Study of Static and Dynamic Characteristics for a Isolation Rubber Mount using the Complex Stiffness (고무의 복합강성을 이용한 방진 마운트의 정적ㆍ동적 특성에 관한 연구)

  • 권오병;김종연;김영구;한문성;고철수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.927-932
    • /
    • 2001
  • Rubber has high damping and can be formed as various shape according to specific purpose. So, Rubber has widely used as isolation mounts. However, there are still a lot of difficulties in understanding of static and dynamic characteristics of compressed and shear rubber mounts. In this paper, Static characteristics of the rubber isolation mount are observed by the analytical method and FEM. Also dynamic characteristics of rubber mount under compression and shear strain are investigated.

  • PDF

A Computer Simulation Method for Dynamic Analysis of Hydraulic Engine Mount System

  • Lee, Sang-Beom;Park, Dong-Woon;Yim, Hong-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1E
    • /
    • pp.42-48
    • /
    • 2002
  • In this paper, a computer simulation method is presented far the dynamic analysis of a hydraulic engine mount system. The hydraulic engine mount system controls the damping characteristics using the viscosity of fluid flow. The complex stiffnesses of the main rubber for the hydraulic engine mount system are computed using a finite element analysis. The equations of motion considering the parameters of the hydraulic engine mount system are derived. To investigate the effects of the hydraulic engine mount system, the computer simulation running over a typical rough road is carried out using a vehicle dynamic model. These results are compared with those of the conventional rubber mount system.

Exact Dynamic Stiffness Matrix of Nonsymmetric Thin-walled Beams Subjected to Eccentrically Axial Forces (편심축하중을 받는 비대칭 박벽보의 엄밀한 동적강도행렬)

  • Kim, Moon Young;Yun, Hee Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.703-713
    • /
    • 2001
  • Derivation procedures of exact dynamic stiffness matrices of thin-walled straight beams subjected to eccentrically axial forces are rigorously presented for the spatial free vibration analysis. An exact dynamic stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of displacement parameters are exactly derived and finally exact stiffness matrices are determined using element force-displacement relationships. The natural frequencies of nonsymmetric thin-walled straight beams are evaluated and compared with analytical solutions or results by thin-walled beam element using the cubic Hermitian polynomials and ABAQU's shell elements in order to demonstrate the validity of this study.

  • PDF

A Study on Dynamic Characteristics of Gear-System (기어-시스템의 동특성에 대한 연구)

  • Lee, Hyoung-Woo;Park, No-Gill
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.111-117
    • /
    • 2005
  • The vibration problems associated with gear coupled rotors have been the focus of much engineering work. These systems are complex and difficult to analyze in that they have the problems associated with conventional rotors plus those additional problems associated with the gear couplings. This paper examines the problems peculiar to the gear mesh. Because of the meshing action of gears, the elasticity of the gear teeth introduces time-varying stiffness coefficients into the governing equations of motion. This means that system response must be thought of in terms of Mathieu-type equations, where multiple-frequency response occur due to the periodic coefficients. The meshing action of the gears also couples the lateral and torsional gear motions. Gear errors, such as tooth profile and spacing errors, produce forces and torque that excite the system at multiple frequencies, some of which are much higher than shaft rotational speed. To investigate how to the time-varying stiffness in the gear teeth and the gear errors act one the dynamic response of the gear coupled rotors, a three-dimensional dynamic model with lateral-tortional oscillation is developed. The harmonic balance technique is employed to solve this mathieu-type problem.

Development of the Predicted Model for the HMA Dynamic Modulus by using the Impact Resonance Testing and Universal Testing Machine (충격공진실험과 만능재료시험기에 의한 아스팔트 공시체의 동탄성계수 예측 모델 개발)

  • Kim, Do Wan;Kim, Dong-Ho;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.43-50
    • /
    • 2014
  • PURPOSES : The dynamic modulus can be determined by applying the various theories from the Impact Resonance Testing(IRT) Method. The objective of this paper is to determine the best theory to produce the dynamic modulus that has the lowest error as the dynamic modulus data obtained from these theories(Complex Wave equation Resonance Method related to either the transmissibility loss or not, Dynamic Stiffness Resonance Method) compared to the results for dynamic modulus determined by using the Universal Testing Machine. The ultimate object is to develop the predictive model for the dynamic modulus of a Linear Visco-Elastic specimen by using the Complex Wave equation Resonance Method(CWRM) came up for an existing study(S. O. Oyadiji; 1985) and the Optimization. METHODS : At the destructive test which uses the Universal Testing Machine, the dynamic modulus results along with the frequency can be used for determining the sigmoidal master curve function related to the reduced frequency by applying Time-Temperature Superposition Principle. RESULTS : The constant to be solved from Eq. (11) is a value of 14.13. The reduced dynamic modulus obtained from the IRT considering the loss factor related to the impact transmissibility has RMSE of 367.7MPa, MPE of 3.7%. When the predictive dynamic modulus model was applied to determine the master curve, the predictive model has RMSE of 583.5MPa, MPE of 3.5% compared to the destructive test results for the dynamic modulus. CONCLUSIONS : Because we considered that the results obtained from the destructive test had the most highest source credibility in this study, the dynamic modulus data obtained respectively from DSRM, CWRM were compared to the results obtained from the destructive test by using th IRT. At the result, the reduced dynamic modulus derived from DSRM has the most lowest error.

Changes of Lower Limb Joints Stiffness with Gait Speed in Knee Osteoarthritis (무릎 골관절염 환자의 보행속도에 따른 하지 관절 강성 변화)

  • Park, Hee-Won;Park, Su-Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.723-729
    • /
    • 2012
  • Spring-like leg models have been employed to explain various dynamic characteristics in human walking. However, this leg stiffness model has limitations to represent complex motion of actual human gait, especially the behaviors of each lower limb joint. The purpose of this research was to determine changes of total leg stiffness and lower limb joint stiffness with gait speed in knee osteoarthritis. Joint stiffness defined as the ratio of the joint torque change to the angular displacement change. Eight subjects with knee osteoarthritis participated to this study. The subject walked on a 12 m long and 1 m wide walkway with three sets of four different randomly ordered gait speeds, ranging from their self-selected speed to maximum speed. Kinetic and kinematic data were measured using three force plates and an optical marker system, respectively. Joint torques of lower limb joints calculated by a multi-segment inverse dynamics model. Total leg and each lower limb joint had constant stiffness during single support phase. The leg and hip joint stiffness increased with gait speed. The correlation between knee joint angles and torques had significant changed by the degree of severity of knee osteoarthritis.

Experimental Investigation Into the Dynamic Characteristics of Flexible Matrix Composite Driveshafts (유연복합재 구동축의 동특성에 관한 실험 분석)

  • Shin Eung-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.93-98
    • /
    • 2006
  • This study provides a comprehensive experimental study on the dynamic characteristics of a flexible matrix composite(FMC) driveshaft. A primary objective is to verify the analytic results of the FMC drivetrain based on the equivalent complex modulus approach and the classical lamination theory. A test rig has been constructed, which consists of a FMC shaft, a foundation beam, bearings, external dampers and a driving motor. The frequency response functions and transient responses are obtained from the external excitation and the spin-up testings. It turns out that the analytic results are in good agreement with the experimental ones.

FE Lubrication Analysis and Dynamic Characteristics of Herringbone Groove Air Bearing applied to High-Speed Color Wheel

  • Lee, An-Sung
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.1-6
    • /
    • 2008
  • In this study is performed a complex lubrication analysis of a herringbone groove air journal bearing, which shows a big potential as an oilless bearing for a color wheel used as an original color source for a large DLP projection television and rotating at a rated-speed of 10,800 rpm. The Galerkin FE and perturbation methods are used for a lubrication analysis of the bearing. The effects of groove number, angle and depth and bearing clearance on the dynamic stability of the bearing are investigated in terms of the critical mass, and its equilibrium positions, stiffness and damping coefficients are calculated at various rotating speeds. Results have shown that the designed herringbone groove air journal bearing is quite suitable as a support bearing for the considered high-speed color wheel in terms of the complex lubrication performances of the bearing itself.