• Title/Summary/Keyword: Dynamic CoefficientI

Search Result 73, Processing Time 0.025 seconds

Seismic Stability Evaluation of the Breakwater Using Dynamic Centrifugal Model Test (동적원심모형 시험을 이용한 지진 시 방파제의 내진안정성 검토)

  • Kim, Young-Jun;Jang, Dong-In;Kawk, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.6
    • /
    • pp.39-50
    • /
    • 2021
  • Recently, as the occurrence of earthquakes with a magnitude of 5.0 or higher in Korea increases, many studies and interests in seismic design are increasing. A lot of damage was caused by the Pohang earthquake in 2017, and port facilities such as a breakwater were also damaged. This study analyzed the dynamic behavior of the upright breakwater, an external facility, based on a centrifugal model experiment. A series of centrifugal model test was conducted by three different seismic waves such as Pohang Earthquake Wave, Artificial Wave I, and II. As a result, the dynamic behavior of upright breakwater was analyzed. The review showed that acceleration amplification tends to be suppressed as breakwater foundation ground increases support and stiffness through DCM reinforcement and riprap replacement.

Evaluating the asymmetric effects of nuclear energy on carbon emissions in Pakistan

  • Majeed, Muhammad Tariq;Ozturk, Ilhan;Samreen, Isma;Luni, Tania
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1664-1673
    • /
    • 2022
  • Achieving sustainable development requires an increasing share of green technologies. World energy demand is expected to rise significantly especially in developing economies. The increasing energy demands will be entertained with conventional energy sources at the cost of higher emissions unless eco-friendly technologies are used. This study examines the asymmetric effects of nuclear energy on carbon emissions for Pakistan from 1974 to 2019. Augmented Dickey-Fuller (ADF) and Phillips Perron (PP) unit root tests suggest that variables are integrated of order one and bound test of Autoregressive Distributed Lag (ARDL) and nonlinear ARDL confirm a long-run relationship among selected variables. The ARDL, Fully Modified Ordinary Least Squares (FMOLS), and Dynamic Ordinary Least Squares (DOLS) results show that the coefficient of nuclear energy has a negative and significant impact on emissions in both short and long run. Further, the NARDL finding shows that there exists an asymmetric long-run association between nuclear energy and CO2 emissions. The vector error correction method (VECM) results indicate that there exists a bidirectional causal relationship between nuclear energy and carbon emissions in both the short and long run. Additionally, the impact of nuclear energy on ecological footprint has been examined and our findings remain robust.

A Computational Fluid Dynamic Study on the Sculling Motion for Water Safety (수상안전을 위한 Sculling 동작의 전산유체역학적 연구)

  • Lee, Hyo-Taek;Kim, Yong-Jae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.24 no.1
    • /
    • pp.18-24
    • /
    • 2012
  • This study analyses the effects of various angles in sculling on human body lift and drag by means of computational fluid dynamics, discusses the importance of sculling and provides a basis for the development of future water safety education programmes. Study subjects were based on the mean data collected from males in the age of 20s from a survey on the anthropometric dimensions of the Koreans. Moreover, lift, drag as well as coefficient values, all of which were governed by the angle of the palm, were calculated using 3-dimentional modelling produced by computational fluid dynamics programmes i.e. CFD. Interpretations were performed via general k-${\varepsilon}$ turbulence modelling in order to determine lift, drag and coefficient values. Turbulence intensity was set to one per cent as per the figures from preceding research papers and 3-dimentional simulations were performed for a total of five different angles $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$. The drag and lift values for the differing angles of the hands during sculling movement are as follows. The lift and drag values gradually increased with the increasing angle of the palm, however, the magnitude of increase for drag started to predominate lift from $45^{\circ}$ and lift gradually decreased from $60^{\circ}$. Overall, it is concluded that the optimal efficiency of sculling can be achieved at the angles $15^{\circ}$ and $30^{\circ}$, and it is anticipated that greater safety and informative education can be ensured for Life saving trainees if the results were to be applied to practical settings. However, as the study was conducted using simulation programmes which performed analyses on the collected anthropometric dimension, the obtained results cannot be made universal, which warrants furthers studies involving varied study subjects with actual measurements taken in water.

Effect of Nonlinear Analysis Procedures for Seismic Responses of Reinforced Concrete Wall Structure (철근콘크리트 벽체구조물의 지진응답에 대한 비선형 해석기법의 영향)

  • Song, Jong-Keol;Jang, Dong-Hui;Chung, Yeong-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.659-675
    • /
    • 2006
  • Recently, significant progress has been made in performance-based engineering methods that rely mainly on nonlinear static seismic analysis procedures. The Capacity Spectrum Method (CSM) and the Displacement Coefficient Method (DCM) are the representative nonlinear static seismic analysis procedures. In order to evaluate the applicability of the procedures to the seismic evaluation and design process of new and existing structures, the accuracy of both CSM and DCM should be evaluated in advance. The accuracy of seismic responses by the nonlinear static procedures is evaluated in comparison with the shaking table test results for the structural wall specimen subjected to the far field and near field earthquakes. Also conducted are comparative studies where the shaking table test results are compared with those from nonlinear dynamic analysis procedures, i.e., Single-Degree-of-Freedom (SDOF), equivalent SDOF and Multi-Degree-of-Freedom (MDOF) systems.

Micro flow sensor using polycrystalline silicon carbide (다결정 실리콘 카바이드를 이용한 마이크로 유량센서)

  • Lee, Ji-Gong;Lei, Man I;Lee, Sung-Pil;Rajgopal, Srihari;Mehregany, Mehran
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.147-153
    • /
    • 2009
  • A thermal flow sensor has been fabricated and characterized, consisting of a center resistive heater surrounded by two upstream and one downstream temperature sensing resistors. The heater and temperature sensing resistors are fabricated from nitrogen-doped(n-type) polycrystalline silicon carbide(poly-SiC) deposited by LPCVD(low pressure chemical vapor deposition) on LPCVD silicon nitride films on a Si substrate. Cavities were etched into the Si substrate from the front side to create suspended silicon nitride membranes carrying the poly-SiC elements. One upstream sensor is located $50{\mu}m$ from the heater and has a sensitivity of $0.73{\Omega}$/sccm with ${\sim}15\;ms$ rise time in a dynamic range of 1000 sccm. N-type poly-SiC has a linear negative temperature coefficient and a TCR(temperature coefficient of resistance) of $-1.24{\times}10^{-3}/^{\circ}C$ from room temperature to $100^{\circ}C$.

Piezoelectric and Electro-induced Strain Properties of $(Pb_{1-2x/3}Bi_x)[(Ni_{1/3}Nb_{2/3})_{0.4}(Ti_{0.6}Zr_{0.4})_{0.6}]O_3$Ceramics with the Substitution of $Bi_2O_3$ ($Bi_2O_3$치환에 따른 $(Pb_{1-2x/3}Bi_x)[(Ni_{1/3}Nb_{2/3})_{0.4}(Ti_{0.6}Zr_{0.4})_{0.6}]O_3$ 세라믹스의 압전 및 전계유기 왜형 특성)

  • 윤현상;정회승;임인호;윤광희;김준한;박창엽
    • Electrical & Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.434-439
    • /
    • 1997
  • It this paper, the piezoelectric and electro-induced strain properties of (P $b_{1-}$2x/3/B $i_{x}$ )[N $i_{1}$3/N $b_{2}$3/)$_{0.4}$( $Ti_{0.6}$Z $r_{0.4}$)$_{0.6}$] $O_3$ceramics (x=0, 0.005, 0.02) were investigated with the substitution of B $i^{3+}$, and the feasibility of the application for bimorph actuator was evaluated by measuring the dynamic properties of the piezoelectric bimorph fabricated with above ceramics. Dielectric constant was enhanced with the increase of B $i^{3+}$ substitution, and appeared the maximum value of 5032 at x=0.01 composition. Increasing the substitution of B $i^{3+}$, the electromechanical coefficient( $k_{p}$ , $k_{31}$ ) was increased up to the substitution of 0.5 mol% B $i^{3+}$, showed the value of 0.656, 0.439, respectively. The piezoelectric constant( $d_{33}$ $d_{31}$ ) had the highest value of 344, 825 with the substitution of 0.5 mol% B $i^{3+}$. The strain, generated by 60 Hz AC electric field, had the largest value of 1200($\times$10$^{-6}$ $\Delta$1/1) in the composition with the substitution of 0.5 mol% B $i^{3+}$. The dynamic properties of the bimorph actuator, fabricated with the composition substitution of 0.5 mol% B $i^{3+}$, showed the largest value of 325 $\mu$m at $\pm$150 V square pulse. square pulse.are pulse..

  • PDF

Running Safety Analysis of Railway Vehicle Systems for Ground Vibration (철도 차량의 지반진동에 의한 주행안전성 평가)

  • Choi, Jun-Sung;Jo, Man-Sup;Lee, Jin-Moo
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.288-295
    • /
    • 2006
  • In this study, dynamic behavior of the vehicles is analyzed, while the track is subjected to lateral vibrations due to earthquake and blasting load. A computer program(WERIA, Wheel Rail Interaction Analysis) is used, which can simulate dynamic responses of vehicles subjected to lateral vibrations. The analysis considers two types of vehicles: I.e. power cars of KTX and Busan subway train. It can also consider the interaction with sub-structures such as tracks and soil. The creep force module is considered, and the running safety of railway vehicles subjected to earthquake and blasting loading is studied. Based on the results of this study, the running safety of the vehicles can be confirmed against lateral vibration.

An FPGA-Based Modified Adaptive PID Controller for DC/DC Buck Converters

  • Lv, Ling;Chang, Changyuan;Zhou, Zhiqi;Yuan, Yubo
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.346-355
    • /
    • 2015
  • On the basis of the conventional PID control algorithm, a modified adaptive PID (MA-PID) control algorithm is presented to improve the steady-state and dynamic performance of closed-loop systems. The proposed method has a straightforward structure without excessively increasing the complexity and cost. It can adaptively adjust the values of the control parameters ($K_p$, $K_i$ and $K_d$) by following a new control law. Simulation results show that the line transient response of the MA-PID is better than that of the adaptive digital PID because the differential coefficient $K_d$ is introduced to changes. In addition, experimental results based on a FPGA indicate that the MA-PID control algorithm reduces the recovery time by 62.5% in response to a 1V line transient, 50% in response to a 500mA load transient, and 23.6% in response to a steady-state deviation, when compared with the conventional PID control algorithm.

Prediction of the static and dynamic mechanical properties of sedimentary rock using soft computing methods

  • Lawal, Abiodun I.;Kwon, Sangki;Aladejare, Adeyemi E.;Oniyide, Gafar O.
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.313-324
    • /
    • 2022
  • Rock properties are important in the design of mines and civil engineering excavations to prevent the imminent failure of slopes and collapse of underground excavations. However, the time, cost, and expertise required to perform experiments to determine those properties are high. Therefore, empirical models have been developed for estimating the mechanical properties of rock that are difficult to determine experimentally from properties that are less difficult to measure. However, the inherent variability in rock properties makes the accurate performance of the empirical models unrealistic and therefore necessitate the use of soft computing models. In this study, Gaussian process regression (GPR), artificial neural network (ANN) and response surface method (RSM) have been proposed to predict the static and dynamic rock properties from the P-wave and rock density. The outcome of the study showed that GPR produced more accurate results than the ANN and RSM models. GPR gave the correlation coefficient of above 99% for all the three properties predicted and RMSE of less than 5. The detailed sensitivity analysis is also conducted using the RSM and the P-wave velocity is found to be the most influencing parameter in the rock mechanical properties predictions. The proposed models can give reasonable predictions of important mechanical properties of sedimentary rock.

Generation of He I 1083 nm Images from SDO/AIA 19.3 and 30.4 nm Images by Deep Learning

  • Son, Jihyeon;Cha, Junghun;Moon, Yong-Jae;Lee, Harim;Park, Eunsu;Shin, Gyungin;Jeong, Hyun-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.41.2-41.2
    • /
    • 2021
  • In this study, we generate He I 1083 nm images from Solar Dynamic Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images using a novel deep learning method (pix2pixHD) based on conditional Generative Adversarial Networks (cGAN). He I 1083 nm images from National Solar Observatory (NSO)/Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used as target data. We make three models: single input SDO/AIA 19.3 nm image for Model I, single input 30.4 nm image for Model II, and double input (19.3 and 30.4 nm) images for Model III. We use data from 2010 October to 2015 July except for June and December for training and the remaining one for test. Major results of our study are as follows. First, the models successfully generate He I 1083 nm images with high correlations. Second, the model with two input images shows better results than those with one input image in terms of metrics such as correlation coefficient (CC) and root mean squared error (RMSE). CC and RMSE between real and AI-generated ones for the model III with 4 by 4 binnings are 0.84 and 11.80, respectively. Third, AI-generated images show well observational features such as active regions, filaments, and coronal holes. This work is meaningful in that our model can produce He I 1083 nm images with higher cadence without data gaps, which would be useful for studying the time evolution of chromosphere and coronal holes.

  • PDF