DOI QR코드

DOI QR Code

Micro flow sensor using polycrystalline silicon carbide

다결정 실리콘 카바이드를 이용한 마이크로 유량센서

  • Lee, Ji-Gong (Electrical Engineering and Computer Science, Case Western Reserve University) ;
  • Lei, Man I (Electrical Engineering and Computer Science, Case Western Reserve University) ;
  • Lee, Sung-Pil (Department of Electronic Engineering, Kyungnam University) ;
  • Rajgopal, Srihari (Electrical Engineering and Computer Science, Case Western Reserve University) ;
  • Mehregany, Mehran (Electrical Engineering and Computer Science, Case Western Reserve University)
  • Published : 2009.03.31

Abstract

A thermal flow sensor has been fabricated and characterized, consisting of a center resistive heater surrounded by two upstream and one downstream temperature sensing resistors. The heater and temperature sensing resistors are fabricated from nitrogen-doped(n-type) polycrystalline silicon carbide(poly-SiC) deposited by LPCVD(low pressure chemical vapor deposition) on LPCVD silicon nitride films on a Si substrate. Cavities were etched into the Si substrate from the front side to create suspended silicon nitride membranes carrying the poly-SiC elements. One upstream sensor is located $50{\mu}m$ from the heater and has a sensitivity of $0.73{\Omega}$/sccm with ${\sim}15\;ms$ rise time in a dynamic range of 1000 sccm. N-type poly-SiC has a linear negative temperature coefficient and a TCR(temperature coefficient of resistance) of $-1.24{\times}10^{-3}/^{\circ}C$ from room temperature to $100^{\circ}C$.

Keywords

References

  1. N. T. Nguyen, 'Micromachined flow sensors-a review', Flow Meas. Instrum., vol. 8, no. 1-17, pp. 7, 1997 https://doi.org/10.1016/S0955-5986(97)00019-8
  2. C. Lyons, A. Friedberger, W. Welser, G. Muller, G. Krotz, and R. Kassing, 'A high-speed mass flow sensor with heated silicon carbide bridges', Proc. of IEEE Conf. on MEMS, pp. 356-360, 1998
  3. M. Mehregany, C. A. Zorman, N. Rajan, and C. H. Wu, Proc. of IEEE Conf. on MEMS, pp. 1594-1610, 1998
  4. A. J. Fleischman, S. Roy, C. A. Zorman, M. Mehregany, and L. G. Matus, 'Polycrystalline silicon carbide for surface micromachining', Proc. of IEEE Conf. on MEMS, pp. 234-238, 1996
  5. J. Trevino, F. Xiao-An, M. Mehregany, and C. Zorman, 'Low-stress, heavily-doped polycrystalline silicon carbide for MEMS applications', Proc. of IEEE Conf. on MEMS, pp. 451-454, 2005
  6. S. Yi, S. Kim, S. Lee, J. Kim, S. Park, S. Lee, and D. Cho, 'Reduction of the residual stress of various oxide films for MEMS structure fabrication', J. Kor. Sens. Soc., vol. 8, pp. 265-273, 1999
  7. M. Kim, D. Park, C. Kim, J. Kim, J. Lee, J. Lee, and B. Sohn, 'Fabrication of stress-balanced Si3N4/SiO2/Si3N4 dielectric membrane', J. Kor. Sens. Soc., vol. 4, pp. 51-59, 1995
  8. T. S. J. Lammerink, N. R. Tas, M. C. Elwenspoek, and J. H. J. Fluitman, 'Micro-liquid flow sensor', Sensors and Actuators A, vol. 37-38, pp. 45-50, 1993 https://doi.org/10.1016/0924-4247(93)80010-E
  9. S. I. Park, J. H. Lee, K. C. Lee, and K. J. Kim, 'Characteristics of micro-thermoelectric mass flow sensors with Si3N4/SiO2/Si3N4 thermal isolation membrane', Japanese J. Applied Physics, vol. 46, pp. 7916-7919, 2007 https://doi.org/10.1143/JJAP.46.7916
  10. N. Sabate, J. Santander, L. Fonseca, I. Gracia, and C. Cane, 'Multi-range silicon micromachined flow sensor', Sensors and Actuators A, vol. 110, pp. 282- 288, 2004 https://doi.org/10.1016/j.sna.2003.10.068

Cited by

  1. The Piezoresistive Effect of SiC for MEMS Sensors at High Temperatures: A Review vol.24, pp.6, 2015, https://doi.org/10.1109/JMEMS.2015.2470132
  2. Thermoresistive Effect for Advanced Thermal Sensors: Fundamentals, Design Considerations, and Applications vol.26, pp.5, 2017, https://doi.org/10.1109/JMEMS.2017.2710354