• Title/Summary/Keyword: Dynamic/Impact tensile strength

Search Result 37, Processing Time 0.023 seconds

Prediction and Verification of Lateral Joining Strength for Tapered-Hole Clinching using the Taguchi Method (다구찌 기법을 이용한 이종재료 경사 홀 클린칭 접합부 수평 방향 접합강도 예측 및 검증)

  • Kang, D.S.;Park, E.T.;Tullu, A.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • Fiber metal laminates (FMLs) are well known for improved fatigue strength, better impact resistance, superior damage tolerance and slow crack growth rate compared to traditional metallic materials. However, defects and loss of strength of a composite material can occur due to the vertical load from the punch during the joining with a dissimilar material using a conventional clinching method. In the current study, tapered-hole clinching was an alternative process used to join Al 5052 and FMLs. The tapered hole was formed in the FML before the joining. For the better understanding of static and dynamic characteristics, a clinched joining followed by a tensile-shear test was numerically simulated using the finite element analysis. The design parameters were also evaluated for the geometry of the tapered hole by the Taguchi method in order to improve and compare the lateral joining strength of the clinched joint. The influence of the neck thickness and the undercut were evaluated and the contribution of each design parameter was determined. Then, actual experiments for the joining and tensile-shear test were conducted to verify the results of the numerical simulations. In conclusion, the appropriate combination of the design parameters can improve the joining strength and the cross-sections of the tapered-hole clinched joint formed in the actual experiments were in good agreement with the results of the numerical simulations.

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.275-278
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it finds use in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. In order to design optimal structural parts made of INCONEL 718, accurate understanding of material's mechanical properties, dynamic behavior and fracture characteristic as a function of strain rates are required. This paper concerned with the dynamic material properties of the INCONEL 718 for the various strain rates. The dynamic response of the INCONEL 718 at intermediate strain rate is obtained from the high speed tensile test machine test and at the high strain rate is from the split Hopkinson pressure bar test. Based on the experimental results, the effects of strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure are evaluated. Experimental results from both quasi-static and high strain rate up to the 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of INCONEL 718.

  • PDF

Impact Modification Effects of SEBS-g-MA on Polyamide 6/Maleated Polypropylene Blends (폴리아미드6/반응성 포리프로필렌 블렌드계에서 SEBS-g-MA의 충격개선효과)

  • Koh, Jae Song;Yoon, Tae Sung;Jung, In Kwon;Choi, Hyeong Ki;Jang, Yoon Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1141-1146
    • /
    • 1999
  • Melt blend of PA6/PP-g-MA system containing SEBS-g-MA as a compatible impact modifier was prepared to investigate the change of mechanical properties and morphologies. The tensile strength slightly decreased, but the elongation at break increased with increasing content of SEBS-g-MA in the blend. Also the notched izod impact strength increased with increasing the content of PP-g-MA and SEBS-g-MA. It is attributed to improved compatibilization and interfacial adhesion by reaction of the amide of PA6 with maleic anhydride of SEBS-g-MA and PP-g-MA. The result of dynamic mechanical analysis(DMA) showed a typical behavior of the compatibilization in the polymer blends. Finally, in the phase structure observed by the use of SEM, we confirmed improvement of the compatibilization and interfacial adhesion with increasing the content of SEBS-g-MA and PP-g-MA.

  • PDF

Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils

  • Beylergil, Bertan;Tanoglu, Metin;Aktas, Engin
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.113-123
    • /
    • 2019
  • In this study, carbon fiber/epoxy (CF/EP) composites were interleaved with aramid nonwoven veils with an areal weight density of $8.5g/m^2$ to improve their Mode-I fracture toughness. The control and aramid interleaved CF/EP composite laminates were manufactured by VARTM in a [0]4 configuration. Tensile, three-point bending, compression, interlaminar shear, Charpy impact and Mode-I (DCB) fracture toughness values were determined to evaluate the effects of aramid nonwoven fabrics on the mechanical performance of the CF/EP composites. Thermomechanical behavior of the specimens was investigated by Dynamic Mechanical Analysis (DMA). The results showed that the propagation Mode-I fracture toughness values of CF/EP composites can be significantly improved (by about 72%) using aramid nonwoven fabrics. It was found that the main extrinsic toughening mechanism is aramid microfiber bridging acting behind the crack-tip. The incorporation of these nonwovens also increased interlaminar shear and Charpy impact strength by 10 and 16.5%, respectively. Moreover, it was revealed that the damping ability of the composites increased with the incorporation of aramid nonwoven fabrics in the interlaminar region of composites. On the other hand, they caused a reduction in in-plane mechanical properties due to the reduced carbon fiber volume fraction, increased thickness and void formation in the composites.

Dynamic Material Characteristics of Superalloy INCONEL 718 with the Variation of Strain Rates (변형률속도 변화에 따른 INCONEL 718 초내열합금의 동적 물성특성)

  • Song J. H.;Huh H.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.559-564
    • /
    • 2005
  • INCONEL 718, nickel based superalloy, has good formability, high strength, excellent corrosion resistance and mechanical properties at high temperature. Owing to theses attractive properties, it is utilized in applications such as combustion system, turbine engines and nuclear reactors. In such applications, components are typically required to be tolerant of high stress impact loading. This may cause material degradation and lead to catastrophic failure during service operation. Accurate understanding of material's mechanical properties with various strain rates is required in order to guarantee the reliability of structural parts made of INCONEL 718. This paper is concerned with the dynamic material properties of the INCONEL 718 at various strain rates. The dynamic response of the INCONEL 718 at the intermediate strain rate is obtained from the high speed tensile test and at the high strain rate is from the split Hopkinson pressure bar test. The effect of the strain rate on dynamic flow stress, work hardening characteristics, strain rate sensitivity and elongation to the failure is evaluated with the experimental results. Experimental results from both the quasi-static and the high strain rate up to 5000/sec are interpolated in order to construct the Johnson-Cook model as the constitutive relation that should be applied to simulate and design the structural parts made of rNCONEL 718.

Rheological and Failure Properties of Polycarbonate/Poly(butylene terephthalate) Blends (폴리카보네이트/폴리(부틸렌 테레프탈레이트) 블렌드의 유변학적 및 파괴특성)

  • Nah, Chang-Woon;Huh, Mong-Young;Choi, Dae-Hwan;Kook, Jeong-Ho;Hwang, In-Ra;Jeong, Kwang-Un;Hong, Chang-Kook
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.399-403
    • /
    • 2007
  • Trans-esterification behavior of polycarbonate/poly(butylene terephthalate) (PC/PBT) blends was investigated during the melt mixing process. Rheological and fracture behaviors, and fracture morphology were also investigated as a function of PC/PBT blend ratio. Based on FT-IR and $^1H-NMR$ results, a trans-esterification reaction was confirmed to occur between PC and PBT during the melt mixing process. The melt index(MI) decreased with increased PC content, indicating the higher flow resistance of PC. The storage and loss moduli were increased by increasing the PC loading, and the PC/PBT blends were rheologically incompatible based on the Cole-Cole plot. The tensile property increased linearly with the increased PC content. However, the impact strength increased until 50 wt% of PC loading, notably around $30{\sim}40wt%$, and then was levelled off at 50 wt%. Rough ridges were formed on the impact fracture surfaces above the 40 wt% of PC content, supporting the observed higher impact strength in this range.

Feasibility of UHPC shields in spent fuel vertical concrete cask to resist accidental drop impact

  • P.C. Jia;H. Wu;L.L. Ma;Q. Peng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4146-4158
    • /
    • 2022
  • Ultra-high performance concrete (UHPC) has been widely utilized in military and civil protective structures to resist intensive loadings attributed to its excellent properties, e.g., high tensile/compressive strength, high dynamic toughness and impact resistance. At present, aiming to improve the defects of the traditional vertical concrete cask (VCC), i.e., the external storage facility of spent fuel, with normal strength concrete (NSC) shield, e.g., heavy weight and difficult to fabricate/transform, the feasibility of UHPC applied in the shield of VCC is numerically examined considering its high radiation and corrosion resistance. Firstly, the finite element (FE) analyses approach and material model parameters of NSC and UHPC are verified based on the 1/3 scaled VCC tip-over test and drop hammer test on UHPC members, respectively. Then, the refined FE model of prototypical VCC is established and utilized to examine its dynamic behaviors and damage distribution in accidental tip-over and end-drop events, in which the various influential factors, e.g., UHPC shield thickness, concrete ground thickness, and sealing methods of steel container are considered. In conclusion, by quantitatively evaluating the safety of VCC in terms of the shield damage and vibrations, it is found that adopting the 300 mm-thick UHPC shield instead of the conventional 650 mm-thick NSC shield can reduce about 1/3 of the total weight of VCC, i.e., about 50 t, and 37% floor space, as well as guarantee the structural integrity of VCC during the accidental drop simultaneously. Besides, based on the parametric analyses, the thickness of concrete ground in the VCC storage site is recommended as less than 500 mm, and the welded connection is recommended for the sealing method of steel containers.

Study of Warm Forging Process for Non-Heat-Treated Steel (비조질강 온간단조를 위한 공정검토)

  • Park, J.S.;Kang, J.D.;Lee, Y.S.;Lee, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.525-530
    • /
    • 2001
  • As a part of efforts to examine feasibility of warm forging near-net-shape process for non-heat-treated steel to replace quenched and tempered S45C steel, the optimized process condition has been determined to be $820^{\circ}C$ for heating, 10/sec for strain rate of forging and approximately 250MPa for flow stress from observed results such as the $A_{3}$ transformation temperature of about $790^{\circ}C$, the fully dynamic recrystallized behavior between $800^{\circ}C\;and\;850^{\circ}C$ when compressed up to 63% engineering strain at 10/sec strain rate, and the high temperature microsturctural stability. Also, controlled cooling rate of $6.3^{\circ}C/sec$ by water-spraying at a rate of $0.10cc/sec-cm^{2}$ for 60seconds followed by air-cooling right after forging process has been considered in this study as a feasible approach based on examination of the microsturcture of mixed ${\alpha}-ferrite$ and pearlite, the hardness and tensile properties meeting specification, and the reduced total cooling time to room temperature. Successive works would be carried out for the impact strength, machinalility, and forgeability at this process in the near future.

  • PDF

The Physical and Thermal Properties Analysis of the VOC Free Composites Comprised of Epoxy Resin, and Dicyandiamide (VOC Free Epoxy Resin/Dicyandiamide 경화물의 배합비 변화에 따른 물리적 특성 및 열적특성 분석)

  • Kim, Daeyeon;Kim, Soonchoen;Park, Young IL;Kim, Young Chul;Lim, Choong-Sun
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.76-82
    • /
    • 2015
  • Volatile organic compounds (VOC) free adhesives have been interested by many scientists and engineers due to environmental regulations and the safety of industrial workers. In this work, a series of composites composed with bisphenol A epoxy resin used as solvent, dicyandiamide, and promoter were prepared to investigate the most appropriate molar ratio for steel-steel adhesion. The cured test specimen of each composite were measured with universal testing machine (UTM) to figure out mechanical properties such as tensile strength, Young’s modulus, and elongation. Furthermore, the lap shear strength of the specimen was tested with UTM while impact resistance was measured with Izod impact tester. The composite whose molar ratio of epoxy resin to curing agent is 1 : 0.9 (sample 3), showed better tensile strength, coefficient of elastic modulus, elongation, and impact strength than other composites did. The highest tanδ from dynamic mechanical analysis (DMA) was observed from sample 2 (epoxy resin: dicy = 1 : 0.7) while sample 3 showed slightly lower tanδ than that of 2. The morphology of the fracture surface of the cured composites from SEM showed that the number of subtle lines on the surface caused by impact increase as the contents of amine curing agent accrete. Furthermore, the viscosity change of sample 5 (epoxy resin: dicy = 1 : 1.3) was observed to confirm its storage stability.

A Study on the Machining Characteristics by the Internal Quality of Conecting Rod's Meterials for Trucks (트럭용 커낵팅 로드 소재의 내부 품질에 따른 절삭 특성 연구)

  • 김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.97-101
    • /
    • 1996
  • In this paper, We have studied internal quality incluiding chemical compositions, microscopic structrue and nonmetalic inclusion of test materials. We have analyzed dynamic characteristics of cutting resistence including tensile strength value, hardeness value, impact value etcs. We have compared chip treatments of test materials. In analyzing internal quality, all of test materials have typical ferrite+pearlite structure. But, nonmetallic inclusion have oxide and sulfide inclusion in medium carbon steels, mainly sulfide inclusion is existed in S-free cutting steels. In Ca+S-free cutting steels, calcium aluminate and sulfide complex inclusion, had low-melting points, as deformation of sulfide and oxide inclusion is existed. machining characteristics, cutting resistence is maximum in Ca+S-free cutting steels, minimum in medium carbon steels. Chip treatements are excellent in S-free cutting steels, similar to the Ca+S free cutting steels and medium carbon steels.

  • PDF