Impact Modification Effects of SEBS-g-MA on Polyamide 6/Maleated Polypropylene Blends

폴리아미드6/반응성 포리프로필렌 블렌드계에서 SEBS-g-MA의 충격개선효과

  • Koh, Jae Song (Department of Chemical Engineering, Inha University) ;
  • Yoon, Tae Sung (Department of Chemical Science and Technology, Agency for Technology & Standards) ;
  • Jung, In Kwon (Department of Chemical Science and Technology, Agency for Technology & Standards) ;
  • Choi, Hyeong Ki (Department of Chemical Science and Technology, Agency for Technology & Standards) ;
  • Jang, Yoon Ho (Department of Chemical Engineering, Inha University)
  • Received : 1999.07.08
  • Accepted : 1999.11.06
  • Published : 1999.12.10

Abstract

Melt blend of PA6/PP-g-MA system containing SEBS-g-MA as a compatible impact modifier was prepared to investigate the change of mechanical properties and morphologies. The tensile strength slightly decreased, but the elongation at break increased with increasing content of SEBS-g-MA in the blend. Also the notched izod impact strength increased with increasing the content of PP-g-MA and SEBS-g-MA. It is attributed to improved compatibilization and interfacial adhesion by reaction of the amide of PA6 with maleic anhydride of SEBS-g-MA and PP-g-MA. The result of dynamic mechanical analysis(DMA) showed a typical behavior of the compatibilization in the polymer blends. Finally, in the phase structure observed by the use of SEM, we confirmed improvement of the compatibilization and interfacial adhesion with increasing the content of SEBS-g-MA and PP-g-MA.

PA6/PP-g-MA 블렌드계에 상용성 충격개선제로서 SEBS-g-MA를 첨가하여 용융혼합하였고 기계적 물성과 모폴로지 변화를 조사하였다. SEBS-g-MA의 첨가에 의해 인장강도는 약간 감소하지만 파단신율은 증가하였다. 충격강도는 PP-g-MA와 SEBS-g-MA 함량이 증가할수록 증가하였다. 이는 무수말레산의 카르복시기와 아마이드의 반응에 의해 계면접착력과 상용성의 개선이 이루어졌기 때문이다. Dynamic mechanical thermal analyzer(DMTA)를 이용한 tan ${\delta}$의 변화에서도 전형적인 고분자 블렌드의 상용화거동을 보였다. 최종적으로 이 블렌드물의 상구조를 관찰한 결과에서도 SEBS-g-MA의 첨가에 따라 분산상의 크기가 감소하는 것으로 보아 상용성과 계면접착력이 개선됨을 확인하였다.

Keywords

References

  1. Polymer(Korea) v.22 S. Lee;J. H. Lee;K. Choi;J. M. Rhee
  2. Polymer v.32 V. J. Triaoca;S. Ziaee;J. W. Barlow;H. Keskkula;D. R. Paul
  3. J. Appl. Polym. Sci. v.28 T. D. Traugott;J. W. Barlow;D. R. Paul
  4. Plastics Engineering I, M. Chen;C. M. Shiah
  5. Emerging Technologies in Plastics Recycling S. A. Jabarin;E. A. Lotgren;S. B. Shah;G. D Andrews(ed.);P. M. Subramanian(ed.)
  6. J. Curry;A. Kiani
  7. Polymer v.28 W. E. Baker;M. Saleem
  8. Polym Eng. Sci. v.27 W. E. Baker;M. Saleem
  9. Polym Eng. Sci. v.33 M. E. Stewart;S. E. Georage;R. L. Miller
  10. Polymer v.35 P. C. Lee;W. F. Kuo;F. C. Chang
  11. SPE ANTEC Tech. Papers v.33 R. E. Laven good;F. M. Silver
  12. Polym. Eng. Sci. v.27 D. V. Howe;M. D. Wolkowicz
  13. Polym. Eng. Sci. v.32 Y. Aoki;M. Watanabe
  14. Polym. Eng. Sci. v.26 G. M. Jordhamo;J. A. Manson;L. H. Sperling
  15. Reactive Extrusion M. Xanthos
  16. Compolloy '90 W. Thiele
  17. Polym Eng. Sci. v.26 G. M. Jordhano;J. A. Manson;L. H. Sperling
  18. J. Polym. Sci., Phys. Ed. v.28 B. D. Favis;J. M. Willis
  19. Polym. Eng. Sci. v.7 S.Wu
  20. Polym. Eng. Sci. v.27 B. D. Favis;J. P. Chalifoux
  21. Polym. Eng. Sci. v.26 J. J. Elmendorf;A. K. Van Der Vegt
  22. Polym. Eng. Sci. v.28 M. Xanthos
  23. J. Mater. Sci. v.28 J. M. Willis;B. D. Favis;C. Lavallee
  24. Polym. Eng. Sci. v.31 M. Xanthos;S. S. Dagli