• Title/Summary/Keyword: Dye Sensitized solar Cell

Search Result 426, Processing Time 0.031 seconds

Titania Nanotube-based Dye-sensitized Solar Cells (티타니아 나노튜브를 이용한 염료감응 태양전지)

  • Kim, Taehyun;Jung, Jihoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.447-452
    • /
    • 2018
  • Titanium nanotubes (TNT) of various lengths ranging from $0.34^{\circ}C$ to a maximum of $8.9^{\circ}C$ were prepared by anodizing a titanium metal sheet in an electrolyte containing fluorine ion ($F^-$) of HF, NaF and $NH_4F$. When TNT prepared by anodizing was calcined at $450^{\circ}C$, anatase crystals with photo activity were formed. The TNT-based dye-sensitized solar cell (DSSC) showed a maximum conversion efficiency of 4.71% when the TNT length was $2.5{\mu}m$. This value was about 18% higher than photo conversion efficiency of the FTO-based DSSC coated with titania paste. And the short circuit current density ($J_{sc}$) of the TNT-DSSC was $9.74mA/cm^2$, which was about 35% higher than the $7.19mA/cm^2$ of FTO-DSSC. The reason for the higher conversion efficiency of TNT-DSSC solar cells is that photoelectrons generated from dyes are rapidly transferred to the electrode surface through TNT, and the recombination of photoelectrons and dyes is suppressed.

Synthesis of Nanoporous F:SnO2 Materials and its Photovoltaic Characteristic (나노 다공질 FTO 제작 및 광전변환특성 고찰)

  • Han, Deok-Woo;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.176-181
    • /
    • 2009
  • In this work, a new type of DSCs based on nanoporous FTO structure is being developed for research aimed at low-cost high-efficiency solar cell application. The nanoporous FTO materials have been prepared through the sol-gel combustion method followed by thermal treatment at $450{\sim}850[^{\circ}C]$. The properties of the nanoporous FTO materials were investigated by IR spectra, BET and TEM analyses, and the photovoltaic performance of the prepared DSCs were examined. It can be seen from the result that the nanoporous FTO exhibited good transparent conductive properties, well suited for DSCs application.

Comparison of Electrical Properties and AFM Images of DSSCs with Various Sintering Temperature of TiO2 Electrodes (TiO2 전극의 소결 온도에 따른 DSSCs의 전기적 특성 및 AFM 형상 비교)

  • Kim, Hyun-Ju;Lee, Dong-Yun;Lee, Won-Jae;Koo, Bo-Kun;Song, Jae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.571-575
    • /
    • 2005
  • In order to improve the efficiency of dye-sensitized solar cell (DSSC), $TiO_2$ electrode screen-printed on transparent conducting oxide (TCO) substrate was sintered in variation with different temperature$(350\;to\;550^{\circ}C)$. $TiO_2$ electrode on fluorine doped tin oxide (FTO) glass was assembled with Pt counter electrode on FTO glass. I-V properties of DSSCs were measured under solar simulator. Also, effect of sintering temperature on surface morphology of $TiO_2$ films was investigated to understand correlation between its surface morphology and sintering temperature. Such surface morphology was observed by atomic force microscopy (AFM). Below sintering temperature of $500^{\circ}C$, efficiency of DSSCs was relatively lower due to lower open circuit voltage. Oppositely, above sintering temperature of $500^{\circ}C$, efficiency of DSSCs was relatively higher due to higher open circuit voltage. In both cases, lower fill factor (FF) was observed. However, at sintering temperature of $500^{\circ}C$, both efficiency and fill factor of DSSCs were mutually complementary, enhancing highest fill factor and efficiency. Such results can be explained in comparison of surface morphology with schematic diagram of energy states on the $TiO_2$ electrode surface. Consequently, it was considered that optimum sintering temperature of a-terpinol included $TiO_2$ paste is at $500^{\circ}C$.

A Preponderant Enhancement of Conversion Efficiency by Surface Coating of $SnO_2$ Nanoparticles in Organic MK-2 Dye Sensitized Solar Cell

  • Son, Dae-Yong;Lee, Chang-Ryul;Park, Nam-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.218-218
    • /
    • 2012
  • Nanocrystalline $SnO_2$ colloids are synthesized by hydrolysis of $SnCl_4{\cdot}5H_2O$ in aqueous ammonia solution. The synthesized $SnO_2$ nanoparticles with ca. 15 nm in diameter are coated on a fluorinedoped thin oxide (FTO) conductive substrate and heated at $550^{\circ}C$. The annealed $SnO_2$ film is treated with aqueous $TiCl_4$ solution, which is sensitzied with MK-2 dye (2-cyano-3-[5'''-(9-ethyl- 9H-carbazol-3-yl)-3',3'',3''',4-tetra-n-hexyl-[2,2',5',2'',5'',2''']-quater thiophen-5-yl]). Compared to bare $SnO_2$ film, the conversion efficiency is significantly improved from 0.22% to 3.13% after surface treatment of $SnO_2$ with $TiCl_4$, which is mainly due to the large increases in both photocurrent density from 1.33 to $9.46mA/cm^2$ and voltage from 315 to 634 mV. It is noted that little change in the amount of the adsorbed dye is detected from 1.21 for the bare $SnO_2$ to $1.28{\mu}mol/cm^2$ for the $TiCl_{4-}$ treated $SnO_2$. This indicates that the photocurrent density increased by more than 6 times is not closely related to the dye loading concentration. From the photocurrent and voltage transient spectroscopic studies, electron life time increases by about 13 order of magnitude, whereas electron diffusion coefficient decreases by about 3.6 times after $TiCl_4$ treatment. Slow electron diffusion rate offers sufficient time for regeneration kinetics. As a result, charge collection efficiency of about 40% before $TiCl_4$ treatment is improved to 95% after $TiCl_4$ treatment. The large increase in voltage is due to the significant increase in electron life time, associated with upward shift of fermi energy.

  • PDF

Technology Development Trends of Self-Powered Next Generation Smart Windows (PV 일체형 차세대 스마트 윈도우 기술개발 동향)

  • Pyun, Sun Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.12
    • /
    • pp.753-764
    • /
    • 2015
  • Among several types of energy saving smart window technologies, the leader, the dynamic EC (electrochromic) window one needs integrated PV (photovoltaics), to minimize expensive electrical wiring as well as to obviate the need for external energy. Self-powered smart windows were reviewed according to PV types used. DSSCs (dye sensitized solar cells) were found to be compatible with EC cells, to have several categories of next generation smart windows such as PECCs (photoelectrochromic cells), PVCCs (photovoltachromic cells), EC polymer PECCs. In addition silicon solar cells and third generation solar cells were investigated. They are summarized in a table showing their advantages and disadvantages respectively for a fast comparison. The strategy to expedite the commercialization of these next generation smart windows includes developing retrofit smart window coverings for use on flexible polymer substrates adhered to the inside surface of a window and easily replaced after use for upto 10 years.

Synthesis of Organized $TiO_2$ Electrodes Using Graft Copolymer and Their Applications to Dye-Sensitized Solar Cells (가지형 공중합체를 이용한 나노구조 $TiO_2$ 제조 및 염료감응 태양전지 응용)

  • Ahn, Sung Hoon;Koh, Joo Hwan;Park, Jung Tae;Kim, Jong Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.64.1-64.1
    • /
    • 2010
  • The morphology of mesoporous $TiO_2$ films plays an important role in the operation of a DSSC. For example, the energy conversion efficiency of DSSCs with well-organized mesoporous $TiO_2$ films is much higher than those with traditional films possessing a random morphology. In previous research, well-organized mesoporous $TiO_2$ films have mainly been synthesized using an amphiphilic block copolymer, e.g., a poly(ethylene oxide) (PEO)-based template. A graft copolymer is more attractive than a block copolymer due to its low cost and the ease with which it can be synthesized. In this work, we provide the first report on the successful synthesis of well-organized mesoporous $TiO_2$ films templated by an organized graft copolymer as a structure directing agent. Well-organized mesoporous $TiO_2$ films with excellent channel connectivities were developed via the sol gel processusing an organized PVC-g-POEM graft copolymer synthesized by one-pot ATRP. The careful adjustment of copolymer composition and solvent affinity using a THF/$H_2O$/HCl mixture was used to systematically vary the material structure. The influence of the material structure on solar cell performance was then investigated. A solid-state DSSC employing both the graft copolymer templated organized 700 nm-thick $TiO_2$ films and graft copolymer electrolytes exhibited a solar conversion efficiency of 2.2% at 100 $mW/cm^2$. This value was approximately two-fold higher than that attained from a DSSC employing a random mesoporous $TiO_2$ film. The solar cell performance was maximized at 4.6% when the film thickness was increased to $2.5{\mu}m$. We believe that this graft copolymer-directed approach introduces a new and simple route toward the synthesis of well-organized metal oxide films as an alternative to a conventional block copolymer-based template.

  • PDF

Effect of the Linkers Between 9,9-Dimethylfluorenyl Terminal Moiety and a-Cyanoacrylic Acid Anchor on the $\lambda_{max}$ of the UV Spectrum and the Energy Efficiency in Dye-Sensitized Solar Cell (DSSC)

  • Lee, Min-U;Cha, Su-Bong;Lee, Jeong-Ryeol;Park, Se-Ung;Kim, Gyeong-Gon;Park, Nam-Gyu;Lee, Deok-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.316-316
    • /
    • 2010
  • Six metal-free organic dyes having thiophene (1), benzene-thiophene (2), thiophene-benzene (3), thiophene-pyridine(4), thiophene-thiophene (5), and pyridine (6) linkers between 9,9-dimethylfluorenyl terminal group and $\alpha$-cyanoacrylic acid anchor were synthesized. Among them, organic dye 5 showed the longest ${\lambda}}max$ value (424 nm) in UV-Vis absorption spectrum, better incident monochromatic photon-to-current conversion efficiency (IPCE), highest short circuit photocurrent density (JSC, 9.33 mA2/cm2), and highest overall conversion efficiency ($\eta$, 3.91%).

  • PDF

Enhancement of Conversion Efficiency of Dye-Sensitized Solar Cells(DSSCs) by Nb2O5 Coating on TiO2 Electrode (Nb2O5 코팅에 따른 염료감응 태양전지의 효율 향상)

  • Park, Seonyeong;Jung, Sukwon;Kim, Jung Hyeun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.506-510
    • /
    • 2010
  • Electron recombinations in electrolyte solution reduce light-to-energy conversion efficiency at the nanoporous electrode surface of dye sensitized solar cells. In this study, we improved the conversion efficiency using an energy barrier at the nanoporous electrode surface to control the recombination process. The energy barrier was formed by coating nanoporous $TiO_2$ electrode with $Nb_2O_5$ material. We investigated the influence of energy barrier on the cell efficiency depending on the coating thickness. Nanoporous $TiO_2$ electrode was coated about 5 nm thickness by 12 times coatings, and so the coating layer was grown about 0.417 nm for every time. Enhancement of conversion efficiency from 2.55% to 4.25% was achieved at 0.834 nm coating thickness, and it was believed as the optimum thickness for minimizing the electron recombination process in our experimental system.

Platinum nanocomposites and its applications: A review

  • Sharon, Madhuri;Nandgavkar, Isaac;Sharon, Maheshwar
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.129-153
    • /
    • 2017
  • Platinum is a transition metal that is very resistant to corrosion. It is used as catalyst for converting methyl alcohol to formaldehyde, as catalytic converter in cars, for hydrocracking of heavy oils, in Fuel Cell devices etc. Moreover, Platinum compounds are important ingredient for cancer chemotherapy drugs. The nano forms of Platinum due to its unique physico-chemical properties that are not found in its bulk counterpart, has been found to be of great importance in electronics, optoelectronics, enzyme immobilization etc. The stability of Platinum nanoparticles has supported its use for the development of efficient and durable proton exchange membrane Fuel Cells. The present review concentrates on the use of Platinum conjugated with various metal or compounds, to fabricate nanocomposites, to enhance the efficiency of Platinum nanoparticles. The recent advances in the synthesis methods of different Platinum-based nanocomposites and their applications in Fuel Cell, sensors, bioimaging, light emitting diode, dye sensitized solar cell, hydrogen generation and in biosystems has also been discussed.

Effect of Plasma Treatment with O2, Ar, and N2 Gas on Porous TiO2 for Improving Energy Conversion Efficiency of DSSC (Dye Sensitized Solar Cell)

  • Gang, Go-Ru;Sim, Seop;Cha, Deok-Jun;Kim, Jin-Tae;Yun, Ju-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.202-202
    • /
    • 2012
  • 염료감응태양전지(DSSC)의 광변환 효율을 향상시키기 위하여 진공챔버에서 450도 고온에서 O2, Ar, and N2 혼합가스를 주입하여 다양한 plasma로 TiO2 박막을 처리하면서 소성시켰다. TiO2 표면을 cleaning하고 활성화함으로서 염료의 결합력을 향상시키는 것 외에 TiO2 내부의 oxygen vacancy를 변화를 관찰하였다. 실험에 사용한 박막은 glass 위에 FTO 박막을 입히고, 다공성 TiO2 나노입자 박막을 코팅하여 제조하였다(porous TiO2 나노입자(${\sim}12{\mu}m$)/FTO(Fluorine doped Tin oxide; $1{\mu}m$)/glass). 완성된 광전극에 대해서 XRD, XPS, EIS, FE-SEM 등을 이용하여 분석하였다. 또한 이렇게 전처리된 광전극을 사용한 DSSC를 제작하였다. 그리고 Solar-simulator를 통해 그 효율을 측정하여 '플라즈마환경에서 소성된 광전극에 대한 DSSC의 광변환효율에 미치는 효과'을 고찰하였다.

  • PDF