• 제목/요약/키워드: Duty-Cycle

Search Result 615, Processing Time 0.036 seconds

A Study for Improving Speed Control Linearity of BLDC Fan Motor (BLDC 팬모터 드라이버의 속도제어 선형성 향상 연구)

  • Lee, Kyoungho;Kim, Kihyun;Kim, Hyoung Woo;Seo, Kilsoo
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.966-967
    • /
    • 2015
  • 본 논문은 BLDC 팬모터의 속도제어 선형성(linearity)에 관한 것이다. PWM으로 모터의 속도를 제어할 때에 입력 duty cycle이 증가함에 따라 모터 속도가 선형적으로 증가하지 않는 문제가 발생한다. 모터를 구동하는 드라이브 IC의 출력 PWM duty cycle을 속도제어의 입력값에 해당하는 입력 PWM duty cycle과 비선형적으로 출력함으로써, 모터 속도의 입력 PWM duty cycle에 대해 선형성을 향상시켰다. 또한, 비휘발성 메모리에 설정값을 저장하여 선형성 정도를 조절가능하도록 하였다. 0.35um CMOS 공정으로 단상 BLDC 모터 드라이브 IC를 설계 및 제작하고, 모터 샘플을 이용하여 PWM 입력 duty cycle과 모터 속도와의 선형성 정도를 측정하였다.

  • PDF

A Study of Variable Wakeup Period for Duty Cycled MAC protocol in WSN (Duty Cycle 기반의 WSN MAC을 위한 트래픽 환경에 따른 가변 Wakeup Period 기법 제안)

  • Lee, Jae-Ho;Eom, Doo-Seop
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.45-55
    • /
    • 2012
  • The energy efficiency is extremely significant in Wireless Sensor Networks (WSN) which deliver the data sensed in the sensor field, using wireless communications. Under the characteristics of WSN, many MAC protocols employ the Duty Cycle mechanism which continuously operates Wakeup and Sleep periods, for the energy efficiency. However, constant Wakeup period in general Duty Cycle incurs the limited performance of the energy efficiency and the receiving ratio. For addressing this, we design and propose a new scheme called Variable Wakeup Period, considering local traffic conditions. Our scheme enhances receiving ratio by increasing Wakeup period under the high traffic condition, and makes high energy efficiency by decreasing Wakeup period under the otherwise condition. In addition, we evaluate the performance of our scheme by performing the simulation, which experiments the previous synchronous and asynchronous MAC protocols, and which also experiments the same protocols with the proposed scheme, for comparative evaluations.

Time Synchronization for WSN Nodes Operating on Low-Energy Sleep-Wake Cycles (저 에너지의 취침 기상 사이클로 작동하는 무선센서 네크워크 노드들을 위한 시간 동기화)

  • Yun, Ho-Jung;Yun, Joo-Sung;Lee, Sung-Gu
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.3
    • /
    • pp.331-335
    • /
    • 2010
  • Previous low-energy time synchronization methods have mainly focused on reducing the number of transmission or reception packets. However, this paper proposes a method that reduces the percentage of time a node has to be awake (the duty cycle), assuming that a periodic sleep-wake cycle is used to conserve energy. Based on our experience with actual WSN devices, a system model is proposed, and the potential performance of the proposed method, with different parameter values, is analyzed. To further demonstrate the feasibility of our method, experiments were conducted using nine WSN devices in a $3{\times}3$ grid network topology. The results show the average synchronization error is 107.57 $\mu{s}$ in duty cycle 5% and synchronization period 10 sec, and 130 $\mu{s}$ in duty cycle 2.5% and synchronization period 20 sec.

Duty Cycle Research for Energy Consumption Efficiency under the IoT Wireless Environment

  • Woo, Eun-Ju;Moon, Yu-Sung;Choi, Ung-Se;Kim, Jung-Won
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1210-1213
    • /
    • 2018
  • In this paper, we propose a method to reduce the amount of current through the Timing Control of the duty cycle and the Report Attribute Control at the MAC Layer in consideration of the Sleep Mode under the IoT wireless environment. The use of a duty cycle is an effective way to reduce energy consumption on wireless sensor networks where the node is placed in sleep mode periodically. In particular, we studied how to control power efficiency through duty rate in Short Transition Time and ACK Time processing while satisfying radio channel limitation criterion. When comparing before and after the improvement considering the delay time constraint, we validated the correlation of the electrical current reduction.

Influence of the Duty Cycle on the Characteristics of Al2O3 Coatings Formed on the Al-1050 by Plasma Electrolytic Oxidation (Al-1050 위에 플라즈마 전해 산화법으로 형성된 Al2O3 피막 특성에 미치는 듀티사이클의 영향)

  • Nam, Kyung-Su;Moon, Jung-In;Kongsy, Phimmavong;Song, Jeong-Hwan;Lim, Dae-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.108-115
    • /
    • 2013
  • Oxide coatings were prepared on Al-1050 substrates by an environment-friendly plasma electrolytic oxidation (PEO) process using an electrolytic solution of $Na_2SiO_3$ (8 g/L) and NaOH (3 g/L). The effects of three different duty cycles (20%, 40%, and 60%) and frequencies (50 Hz, 200 Hz, and 800 Hz) on the structure and micro-hardness of the oxide coatings were investigated. XRD analysis revealed that the oxides were mainly composed of ${\alpha}-Al_2O_3$, ${\gamma}-Al_2O_3$, and mullite. The proportion of each crystalline phase depended on various electrical parameters, such as duty cycle and frequency. SEM images indicated that the oxide coatings formed at a 60% duty cycle exhibited relatively coarser surfaces with larger pore sizes and sintering particles. However, the oxides prepared at a 20% duty cycle showed relatively smooth surfaces. The PEO treatment also resulted in a strong adhesion between the oxide coating and the substrate. The oxide coatings were found to improve the micro-hardness with the increase of duty cycle. The structural and physical properties of the oxide coatings were affected by the duty cycles.

Analysis on Co-use Parameter in TV Band Using a Transmisssion Probability Concept of Interfering Transmitter (간섭 송신기의 전송확률 개념을 이용한 방송대역 공용 파라미터 분석)

  • Cho, Ju-Phil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1587-1592
    • /
    • 2012
  • Analysis on co-use parameters in TV frequency channels is essential to utilize a TV White Space(TVWS) efficiently. A transmission probability of interfering transmitter can be used as some criteria for performance evaluation of the systems that co-use the cochannels. We considered a duty cycle as a parameter for getting the method how heterogeneous systems can use simultaneously a co-channel in TVWS. We analyze the transmission probability of interfering transmitter with an assumption that the probability is the same as the duty cycle, a time that it spends in an active state as a fraction of the total under consideration. In order to make an analysis of relationship between duty cycle and performances of two systems. We take into consideration on the case that WLAN is an victim receiver and WiBro is a interfering transmitter. Analyzed coexistence results may be widely applied into the technique developed to get the coexisting condition for wireless devices using many communication protocols in same frequency.

Low-area Duty Cycle Correction Circuit for Voltage-Controlled Ring Oscillator (전압제어 링 발진기용 저-면적 듀티 사이클 보정 회로)

  • Yu, Byeong-Jae;Cho, Hyun-Mook
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.1
    • /
    • pp.103-107
    • /
    • 2019
  • Recently, many technologies have been developed to realize low power high speed digital data communication and one of them is related to duty cycle correction. In this paper, a low-area duty cycle correction circuit for a voltage-controlled ring generator is proposed. The duty cycle correction circuit is a circuit that corrects the duty cycle using a 180 degree phase difference of a voltage controlled ring oscillator. The proposed low-area duty cycle circuit changes a conventional flip-flop to a true single phase clocking (TSPC) flip-flop And a low-area high-performance circuit is realized. By using TSPC flip-flop instead of general flip-flop, it is possible to realize low-area circuit compared to existing circuit, and it is expected to be used for high-performance circuit for low-power because it is easy to operate at high speed.

Respiratory signal analysis of liver cancer patients with respiratory-gated radiation therapy (간암 호흡동조 방사선치료 환자의 호흡신호분석)

  • Kang, dong im;Jung, sang hoon;Kim, chul jong;Park, hee chul;Choi, byung ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Purpose : External markers respiratory movement measuring device (RPM; Real-time Position Management, Varian Medical System, USA) Liver Cancer Radiation Therapy Respiratory gated with respiratory signal with irradiation time and the actual research by analyzing the respiratory phase with the breathing motion measurement device respiratory tuning evaluate the accuracy of radiation therapy Materials and Methods : May-September 2014 Novalis Tx. (Varian Medical System, USA) and liver cancer radiotherapy using respiratory gated RPM (Duty Cycle 20%, Gating window 40% ~ 60%) of 16 patients who underwent total when recording the analyzed respiratory movement. After the breathing motion of the external markers recorded on the RPM was reconstructed by breathing through the acts phase analysis, for Beam-on Time and Duty Cycle recorded by using the reconstructed phase breathing breathing with RPM gated the prediction accuracy of the radiation treatment analysis and analyzed the correlation between prediction accuracy and Duty Cycle in accordance with the reproducibility of the respiratory movement. Results : Treatment of 16 patients with respiratory cycle during the actual treatment plan was analyzed with an average difference -0.03 seconds (range -0.50 seconds to 0.09 seconds) could not be confirmed statistically significant difference between the two breathing (p = 0.472). The average respiratory period when treatment is 4.02 sec (${\pm}0.71sec$), the average value of the respiratory cycle of the treatment was characterized by a standard deviation 7.43% (range 2.57 to 19.20%). Duty Cycle is that the actual average 16.05% (range 13.78 to 17.41%), average 56.05 got through the acts of the show and then analyzed% (range 39.23 to 75.10%) is planned in respiratory research phase (40% to 60%) in was confirmed. The investigation on the correlation between the ratio Duty Cycle and planned respiratory phase and the standard deviation of the respiratory cycle was analyzed in each -0.156 (p = 0.282) and -0.385 (p = 0.070). Conclusion : This study is to analyze the acts after the breathing motion of the external markers recorded during the actual treatment was confirmed in a reproducible ratios of actual treatment of breathing motion during treatment, and Duty Cycle, planned respiratory gated window. Minimizing an error of the treatment plan using 4DCT and enhance the respiratory training and respiratory signal monitoring for effective treatment it is determined to be necessary.

  • PDF

A Congestion Control Scheme Using Duty-Cycle Adjustment in Wireless Sensor Networks (무선 센서 네트워크에서 듀티사이클 조절을 통한 혼잡 제어 기법)

  • Lee, Dong-Ho;Chung, Kwang-Sue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.154-161
    • /
    • 2010
  • In wireless sensor networks, due to the many-to-one convergence of upstream traffic, congestion more probably appears. The existing congestion control protocols avoid congestion by controlling incoming traffic, but the duty-cycle operation of MAC(Medium Access Control) layer has not considered. In this paper, we propose DCA(Duty-cycle Based Congestion Avoidance), an energy efficient congestion control scheme using duty-cycle adjustment for wireless sensor networks. The DCA scheme uses both a resource control approach by increasing the packet reception rate of the receiving node and a traffic control approach by decreasing the packet transmission rate of the sending node for the congestion avoidance. Our results show that the DCA operates energy efficiently and achieves reliability by its congestion control scheme in duty-cycled wireless sensor networks.