• Title/Summary/Keyword: Duration Curve

Search Result 443, Processing Time 0.026 seconds

Development of Regional Regression Model for Estimating Flow Duration Curves in Ungauged Basins (미계측 유역의 유황곡선 산정을 위한 지역회귀모형의 개발)

  • Lee, Tae Hee;Lee, Min Ho;Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.427-437
    • /
    • 2016
  • The objective of this study is to develop the regional regression models based on the physiographical and climatological characteristics for estimating flow duration curve (FDC) in ungauged bsisns. To this end, the lower sections with duration from 185 to 355 days of FDCs were constructed from the 16 gauged streamflow data, which were fitted to the two-parameter logarithmic type regression equation. Then, the parameters of the equation were regionalized using the basin characteristics such as basin area, basin slope, drainage density, mean annual precipitation, mean annual streamflow, runoff curve number in order that the proposed regression model can be used for ungauged basin. From the comparison of the estimated by the regional regression model with the observed ones, the model with the combination of basin area, runoff curve number, mean annual precipitation showed the best performance.

Estimating BOD, CDO and TOC Hydrologic Flux in Nakdong River Basin (낙동강 유역 BOD, COD 및 TOC의 수문학적 플럭스 추정)

  • Lee, A-Yeon;Park, Moo-Jong;Jo, Deok-Jun;Kim, Sang-Dan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.9
    • /
    • pp.830-839
    • /
    • 2010
  • This study presents a constituent load estimating procedure that can be operated with the present Korean TMDL monitoring system. The modified TANK model is used as a daily river flow simulation model whose parameters are estimated from 8-day intervals flow data. Constituent loads are estimated with the 7-parameter log linear model whose parameters are estimated by the minimum variance unbiased estimator. Results from Nakdong river basin reveals that the proposed procedure provides satisfactory TOC and BOD load estimates. As an application, a representative load duration curve is derived for working out a way to represent the overall hydrologic flux of BOD, COD and TOC at Nakdong river basin. The present water quality can be checked stochastically by Load Duration Curve through this study and presented visually.

A Study on Construction of the CMELDC at Load Points (각 부하지점별 유효부하지속곡선 작성법에 관한 연구)

  • Kim, Hong-Sik;Mun, Seung-Pil;Choe, Jae-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.195-198
    • /
    • 2000
  • This paper illustrates a new method for constructing composite power system effective load duration curve(CMELDC) at load points. The main concept of proposed method is that the CMELDC can be obtain from convolution integral processing of the outage probabilistic distribution function of not supplied power and the load duration curve given at each load point. The effective load duration curve (ELDC) at HLI plays an important part in probabilistic production simulation, reliability evaluation, outage cost assessment and power supply margins assesment for power system planning and operation. And also, the CMELDC at HLII will extend the application areas of outage cost assessment and reliability evaluation at each load point. The CMELDC at load points using the Monte Carlo method and a DC load flow constrained LP have already been developed by authors. The effective load concept at HLII, however, has not been introduced sufficiently in last paper although the concept is important. In this paper, the main concept of the effective load at HLII which is proposed in this study is defined in details as the summation of the original load and the probabilistic loads caused by the forced outage of generators and transmission lines at this load point. The outage capacity probabilistic distribution function at HLII can be obtained by combining the not supplied powers and the probabilities of the not supplied powers at this load point. It si also expected that the proposed CMELDC can be applied usefully to research areas such as reliability evaluation, probabilistic production cost simulation and analytical outage cost assessment, etc. at HLII in future. The characteristics and effectiveness of this methodology are illustrated by case study of IEEE-RTS.

  • PDF

Identifying Priority Area for Nonpoint Source Pollution Management and Setting up Load Reduction Goals using the Load Duration Curve (부하지속곡선을 이용한 비점오염원 우선관리 지역 선정 및 관리목표 설정 연구)

  • Jang, Sun Sook;Ji, Hyun Seo;Kim, Hak Kwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.17-27
    • /
    • 2018
  • The objective of this study is to identify the priority area where the nonpoint source pollution (NPS) management is required and to set up the load reduction goals for the identified priority area. In this study, the load duration curve (LDC) was first developed using the flow and water quality data observed at 286 monitoring stations. Based on the developed LDC, the priority area for the NPS pollution management was determined using a three-step method. The 24 watersheds were finally identified as the priority areas for the NPS pollution management. The water quality parameters of concern in the priority areas were the total phosphorus or chemical oxygen demand. The load reduction goals, which were calculated as the percent reduction from current loading levels needed to meet target water quality, ranged from 67.9% to 97.2% during high flows and from 40.3% to 69.5% during moist conditions, respectively. The results from this study will help to identify critical watersheds for NPS program planning purposes. In addition, the process used in this study can be effectively applied to identify the pollutant of concern as well as the load reduction target.

Relationship between the Flow data on the Unit Watersheds and on the Stream Flow Monitoring Network (수질오염총량관리 단위유역 유량자료와 하천유량 측정망 자료의 연계성 분석)

  • Park, Jun Dae;Oh, Seung Young
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.55-65
    • /
    • 2013
  • It is very difficult to apply stream flow data directly to the management of Total Maximum Daily Loads because there are some differences between the unit watershed and the stream flow monitoring network in their characteristics such as monitoring locations and its intervals. Flow duration curve can be developed by linking the daily flow data of stream monitoring network to 8 day interval flow data of the unit watershed. This study investigated the current operating conditions of the stream flow monitoring network and the flow relationships between the unit watershed and the stream flow monitoring network. Criteria such as missing and zero value data, and correlation coefficients were applied to select the stream flow reference sites. The reference sites were selected in 112 areas out of 142 unit watersheds in 4 river basins, where the stream flow observations were carried out in relatively normal operating conditions. These reference sites could be utilized in various ways such as flow variation analysis, flow duration curve development and so on for the management of Total Maximum Daily Loads.

Development of Load Duration Curve Methodology for TMDL Evaluation (오염총량평가를 위한 부하지속곡선 개발 및 적용)

  • Kang, Du-Kee;Kang, Soon-Ku;Kim, Sang-Dan;Shin, Hyun-Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.652-656
    • /
    • 2007
  • The major streams in South Korea have established the TMDL(Total Maximum Daily Loads) regulation for just 4 years. Traditional concepts in water quality management in South Korea are based upon the selection of a design streram flow which is 10-year averged flow exeedance probability 75%(Q275). That is, a single flow value based upon average long term flow conditions is chosen for application in dilution calculations, permit design, water quality modeling, etc. While these TMDLs seems to satisfy the requirement of the target water quality regulations, they have contributed little to any watershed/waterbody assessment and restoration plans. These types of TMDLs do little to characterize the problems the TMDLs are intended to address. For TMDLs to be more beneficial in the assessment and implementation process, TMDLs should reflect adequate water quality across flow conditions rather than at a single flow value such as average daily flow. In this paper, we developed LDC (load duration curve) methodology for theevaluation of Korean TMDL evaluation based on watershed scaled, physically based on SWAT(Soil and Water Assessment Tool) model.

  • PDF

Modeling of Distributed Generation to Calculate Reliability of Customers (수용가의 신뢰도 평가를 위한 분산전원 모델링)

  • Jo, Jong-Man;Bae, In-Su;Shim, Hun;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.70-76
    • /
    • 2005
  • Unlike the large sized generations of transmission system, the distributed generations have complexities in analyzing and determining model. This paper resents an analytical method for the reliability evaluation of distribution system, including the distributed generations. The method using Load Duration Curve model is simpler than the Monte-Carlo Simulation and is more accurate than that using peak load model. The modeling of distributed generation to analysis reliability of customers using LDC is proposed in this paper, and is compared with the MCS method as a result of case studies.

Prediction of the daily-flow duration curve and streamflow using the regional flow duration curve creation technique (지역화 유황곡선을 작성기법을 이용한 유역의 일유황곡선 및 유량 예측)

  • Choo, Kyung Su;Jeung, Se Jin;Kim, Byung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.132-132
    • /
    • 2020
  • 유황곡선은 하천유량의 변동성을 함축적으로 나타내고 연간유량 분석방법(calendar-year method)과 전 자료기간유량분석방법(total-period method)을 이용하여 작성하고 분석할 수 있다. 본 연구는 유황곡선 상에서 유역특성인자들을 포함시켜 작성하는 방법을 제시하였고 지형 및 기상학적 인자를 통해 지역화 시킨 유황곡선을 통해 미계측 유역의 유황곡선을 추정할 수 있는 곡선을 개발하고자 한다. 이를 위해 유역의 특성인자자료를 수집하여 독립변수로 설정하였고 다중회귀분석을 실시하여 변수들을 지역화 시켰다. 지역화 시킨 변수들을 유황곡선에 반영하여 대상지역에서 하나의 유황곡선으로 나타내었다. 도출한 유황곡선을 자료가 있는 지역을 미계측유역이라 가정하고 검증하였다. 검증결과 실제자료와 유사하게 나타나는 것을 확인할 수 있었고 이를 통해 미계측 유역의 유출량 자료가 부족한 유역에 대한 예측과 과거 많은 부분이 결측된 유역에 대한 유출량 예측도 가능할 것이라 판단된다. 또한 강우시나리오를 통해 지형인자가 고려된 유황곡선을 이용한 다양한 자료분석을 실시할 수 있을 것이라 판단된다.

  • PDF

Proposal and Application of Water Deficit-Duration-Frequency Curve using Threshold Level Method (임계수준 방법을 이용한 물 부족량-지속기간-빈도 곡선의 제안 및 적용)

  • Sung, Jang Hyun;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.997-1005
    • /
    • 2014
  • This study evaluated hydrological drought the using the annual minimum flow and the annual maximum deficit method and proposed the new concept of water deficit-duration-frequency curves similar to rainfall intensity-duration-frequency curves. The analysis results of the annual minimum flow, the return periods of hydrological drought in the most duration of 1989 and 1996yr were the longest. The analysis results of the annual maximum deficit, the return periods of 60-days and 90-day deficit which are relatively short duration were the longest in 1995yr, about 35-year, Hydrological drought lasted longer was in 1995, the return period was about 20-year. Though duration as well as magnitude is a key variable in drought analysis, it was found that the method using the annual minimum flow duration not distinguish duration.

Parameter Estimation of Intensity-Duration-Frequency Formula Using Genetic Algorithm(II): Separation of Short and Long Durations (유전자알고리즘을 이용한 강우강도식 매개변수 추정에 관한 연구(II): 장.단기간 구분 방법의 제시)

  • Shin, Ju-Young;Kim, Tae-Son;Kim, Soo-Young;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.10
    • /
    • pp.823-832
    • /
    • 2007
  • In this study, the separation of short and long durations for estimation the parameters of IDF curve is suggested by using Multi-Objective Genetic Algorithm (MOGA). Objective functions are to minimize root mean squared error (RMSE) and relative RMSE between observed and computed values. The criteria for separation are two; the first one is to estimate more precisely the parameters of IDF curve and the second is to make a single IDF curve without non-continuous duration point. For this purpose 22 rainfall recording gauges operated by Korea Meteorological Administration are selected and three IDF curves that are used generally in South Korea are tested. The result shows that the IDF curve developed by Heo et al. (1999) would be the best of three tested IDF curves, and the suggested parameter estimation method using MOGA can compute more reliable parameters compared with empirical regression analysis.