• Title/Summary/Keyword: Duplex detection

Search Result 59, Processing Time 0.038 seconds

Blind downlink channel estimation for TDD-based multiuser massive MIMO in the presence of nonlinear HPA

  • Pasangi, Parisa;Atashbar, Mahmoud;Feghhi, Mahmood Mohassel
    • ETRI Journal
    • /
    • v.41 no.4
    • /
    • pp.426-436
    • /
    • 2019
  • In time division duplex (TDD)-based multiuser massive multiple input multiple output (MIMO) systems, the uplink channel is estimated and the results are used in downlink for signal detection. Owing to noisy uplink channel estimation, the downlink channel should also be estimated for accurate signal detection. Therefore, recently, a blind method was developed, which assumes the use of a linear high-power amplifier (HPA) in the base station (BS). In this study, we extend this method to a scenario with a nonlinear HPA in the BS, where the Bussgang decomposition is used for HPA modeling. In the proposed method, the average power of the received signal for each user is a function of channel gain, large-scale fading, and nonlinear distortion variance. Therefore, the channel gain is estimated, which is required for signal detection. The performance of the proposed method is analyzed theoretically. The simulation results show superior performance of the proposed method compared to that of the other methods in the literature.

Computationally-Efficient Algorithms for Multiuser Detection in Short Code Wideband CDMA TDD Systems

  • De, Parthapratim
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.27-39
    • /
    • 2016
  • This paper derives and analyzes a novel block fast Fourier transform (FFT) based joint detection algorithm. The paper compares the performance and complexity of the novel block-FFT based joint detector to that of the Cholesky based joint detector and single user detection algorithms. The novel algorithm can operate at chip rate sampling, as well as higher sampling rates. For the performance/complexity analysis, the time division duplex (TDD) mode of a wideband code division multiplex access (WCDMA) is considered. The results indicate that the performance of the fast FFT based joint detector is comparable to that of the Cholesky based joint detector, and much superior to that of single user detection algorithms. On the other hand, the complexity of the fast FFT based joint detector is significantly lower than that of the Cholesky based joint detector and less than that of the single user detection algorithms. For the Cholesky based joint detector, the approximate Cholesky decomposition is applied. Moreover, the novel method can also be applied to any generic multiple-input-multiple-output (MIMO) system.

A Novel Multiplex-PCR Assay to Detect Three Non-Halal Meats Contained in Meatball using Mitochondrial 12S rRNA Gene

  • Cahyadi, Muhammad;Wibowo, Tommy;Pramono, Ahmad;Abdurrahman, Zakaria Husein
    • Food Science of Animal Resources
    • /
    • v.40 no.4
    • /
    • pp.628-635
    • /
    • 2020
  • The objective of this study was to detect three non-halal meat products consisted of dog, pork, and rat species in meatball using novel multiplex-PCR with 12S rRNA gene as target sites. A total of 33 self-made meatballs were used, and they were grouped into eleven types of meatball based on meat species origin contained in the meatballs. Each type consisted of three meatballs. Extraction of genomic DNA from the meatballs was used as a DNA template for simplex-, duplex-, and multiplex-PCR processes. The result of simplex-PCR, duplex-PCR, and multiplex-PCR showed that the 12S rRNA primer gene successfully amplified DNA for each species bovine, dog, pig, and rat, which are respectively indicated by 155, 244, 357, and 491 bp of DNA bands. In addition, multiplex-PCR with 12S rRNA gene primers can be uniquely and accurately used for detection bovine, dog, pig, and rat species on beef meatball in one reaction.

Development of a Duplex RT-PCR Assay for the Simultaneous Detection and Discrimination of Avirulent and Virulent Newcastle Disease Virus (NDV) (뉴캣슬병 바이러스 검출 및 병원성 감별을 위한 Duplex RT-PCR법 개발)

  • Kim, Ji-Ye;Lee, Hyun-Jeong;Jang, Il;Lee, Hee-Soo;Yoon, Seung-Jun;Park, Ji-Sung;Seol, Jae-Goo;Kim, Seung-Han;Hong, Ji-Mu;Wang, Zillian;Liu, Hualei;Choi, Kang-Seuk
    • Korean Journal of Poultry Science
    • /
    • v.44 no.2
    • /
    • pp.93-102
    • /
    • 2017
  • A duplex RT-PCR (dRT-PCR) assay was developed for the simultaneous detection and discrimination of non-virulent and virulent Newcastle disease virus (NDV) in a single PCR tube. Primers targeting the large polymerase protein (L) gene and the fusion protein (F) gene of NDV were designed to detect all NDVs (by common type PCR primers) and virulent NDVs (by pathotype PCR primers), respectively and evaluated experimentally with reference NDV strains and other poultry viral pathogens. PCR products of the expected size of 386 bp were amplified from all NDV samples whereas PCR products of the expected size of 229 bp were amplified from virulent NDV samples alone. Cross reaction was not observed with other avian viral pathogens. The detection limit of NDV by the dRT-PCR was estimated to be $10^3$ 50% egg infectious dose/0.1 mL. In the dRT-PCR using field isolates of NDV, the pathotype PCR primers detected specifically all of virulent field isolates of NDV from Malaysia, Pakistan and China whereas common type PCR primers detected 94.4% (51/54) of field isolates of NDV from China. Three Chinese NDV isolates with false negative result were non-virulent viruses. Our results indicate that the dRT-PCR might provide a rapid and simple tool for rapid simultaneous detection and discrimination of non-virulent and virulent NDVs. Therefore the developed dRT-PCR assay provides a powerful novel means for the rapid diagnosis of Newcastle disease.

Genomics-based Sensitive and Specific Novel Primers for Simultaneous Detection of Burkholderia glumae and Burkholderia gladioli in Rice Seeds

  • Lee, Chaeyeong;Lee, Hyun-Hee;Mannaa, Mohamed;Kim, Namgyu;Park, Jungwook;Kim, Juyun;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.490-498
    • /
    • 2018
  • Panicle blight and seed rot disease caused mainly by Burkholderia glumae and Burkholderia gladioli is threatening rice cultivation worldwide. The bacteria have been reported as seed-borne pathogens from rice. Accurate detection of both pathogens on the seeds is very important for limiting the disease dissemination. Novel primer pairs targeting specific molecular markers were developed for the robust detection of B. glumae and B. gladioli. The designed primers were specific in detecting the target species with no apparent cross-reactions with other related Burkholderia species at the expected product size. Both primer pairs displayed a high degree of sensitivity for detection of B. glumae and B. gladioli separately in monoplex PCR or simultaneously in duplex PCR from both extracted gDNA and directly preheated bacterial cell suspensions. Limit of detection was as low as 0.1 ng of gDNA of both species and $3.86{\times}10^2cells$ for B. glumae and $5.85{\times}10^2cells$ for B. gladioli. On inoculated rice seeds, the designed primers could separately or simultaneously detect B. glumae and B. gladioli with a detection limit as low as $1.86{\times}10^3cells$ per rice seed for B. glumae and $1.04{\times}10^4cells$ per rice seed of B. gladioli. The novel primers maybe valuable as a more sensitive, specific, and robust tool for the efficient simultaneous detection of B. glumae and B. gladioli on rice seeds, which is important in combating rice panicle blight and seed rot by early detection and confirmation of the dissemination of pathogen-free rice seeds.

Convenient Genetic Diagnosis of Virion Captured (VC)/RT-PCR for Rice Viruses (RSV, RBSDV) and Small Brown Plant Hopper (벼 바이러스(RSV, RBSDV)와 애멸구의 간편한 VC/RT-PCR 유전자 진단기술)

  • Kim, Jeong-Soo;Lee, Su-Heon;Choi, Hong-Soo;Cho, Jeom-Deog;Noh, Tai-Whan;Kim, Jin-Young
    • Research in Plant Disease
    • /
    • v.15 no.2
    • /
    • pp.57-62
    • /
    • 2009
  • Genetic diagnosis method of Virion Captured (VC)/RT-PCR for Rice stripe virus (RSV) and Rice black-streaked dwarf virus (RBSDV), Korean major rice viruses transmitted by small brown plant hopper, Laodelphax striatellus, was developed. Virion extraction buffer for rice plant was 0.01M potassium phosphate buffer, pH 7.0, containing 0.5% sodium sulfite. However, the extraction buffer for L. striatellus was 0.01M potassium phosphate buffer, pH 7.0, containing 0.5% sodium sulfite and 2% polyvinylpyrrolidone wt 40,000 (PVP-40). Specific primers for detection of RSV and RBSDV were selected for VC/RT-PCR method. The specific primers were used as a duplex primer to detect viruliferous small brown plant hopper collected from Gimpo, Pyeongtaek and Siheung areas in Gyeonggi province. The genetic diagnosis methods of single and duplex VC/RT-PCR for RSV and RBSDV could be used easily and economically, especially on the diagnosis of L. striatellus. The rate of viruliferous insect (RVI) for RSV was compared with ELISA and VC/RT-PCR for L. striatellus collected from fields. RVI by ELISA was same as 9.2% with RVI by VC/RT-PCR. However, there were some different detection results between the methods. It could be suggested that there is a possibility of serological and/or genomic differences among RSV isolates. The portion of RVI detected simultaneously by ELISA and VC/RT-PCR was 71.0%, and the detection rate from VC/RT-PCR was higher as 3.2% than that from ELISA, which had a reason of simultaneous detection ability both RSV and RBSDV of VC/RT-PCR.

Rapid Detection of Vancomycin-resistant Enterococci (VRE) in Clinical Samples from University Hospital

  • Yang, Byoung-Seon;Park, Jung-Yeon;Choi, Seung-Gu
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.45 no.1
    • /
    • pp.16-20
    • /
    • 2013
  • Outbreaks of vancomycin-resistant enterococci (VRE) are being reported more frequently in many countries. While seven glycopeptide resistance genotypes have been described in Enterococci, vanA and vanB are the most common resistance genotypes. The aim of this study was to detect antibiotic susceptibilities of 23 Enterococcus faecium strains, which caused an outbreak in a University hospital by a disk diffusion test to investigate the presence of the species specific gene, and the resistant genotypes, vanA and vanB by duplex PCR. PCR for vanA and vanB was performed on 23 enterococci. Twenty three were identified as E. faecium and were tested positive for the vanA genotype. This study will report on the validation of a simple and accurate VRE detection method that can be easily incorporated into the daily routine of a clinical laboratory. Early detection of VRE strains, including those with susceptibility to vancomycin, is of paramount clinical importance as it allows rapid initiation of strict infection control practices, as well as the therapeutic guidance for confirmed infections. The PCR method developed in the present study is simple and reliable for the rapid characterization of VRE.

  • PDF

A new cell-direct quantitative PCR based method to monitor viable genetically modified Escherichia coli

  • Yang Qin;Bo Qu;Bumkyu Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.847-859
    • /
    • 2022
  • The development and commercialization of industrial genetically modified (GM) organisms is actively progressing worldwide, highlighting an increased need for improved safety management protocols. We sought to establish an environmental monitoring method, using real-time polymerase chain reaction (PCR) and propidium monoazide (PMA) treatment to develop a quantitative detection protocol for living GM microorganisms. We developed a duplex TaqMan quantitative PCR (qPCR) assay to simultaneously detect the selectable antibiotic gene, ampicillin (AmpR), and the single-copy Escherichia coli taxon-specific gene, D-1-deoxyxylulose 5-phosphate synthase (dxs), using a direct cell suspension culture. We identified viable engineered E. coli cells by performing qPCR on PMA-treated cells. The theoretical cell density (true copy numbers) calculated from mean quantification cycle (Cq) values of PMA-qPCR showed a bias of 7.71% from the colony-forming unit (CFU), which was within ±25% of the acceptance criteria of the European Network of GMO Laboratories (ENGL). PMA-qPCR to detect AmpR and dxs was highly sensitive and was able to detect target genes from a 10,000-fold (10-4) diluted cell suspension, with a limit of detection at 95% confidence (LOD95%) of 134 viable E. coli cells. Compared to DNA-based qPCR methods, the cell suspension direct PMA-qPCR analysis provides reliable results and is a quick and accurate method to monitor living GM E. coli cells that can potentially be released into the environment.

Optimization of ultra-fast convection polymerase chain reaction conditions for pathogen detection with nucleic acid lateral flow immunoassay

  • Kim, Tae-Hoon;Hwang, Hyun Jin;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • v.44 no.1
    • /
    • pp.8-13
    • /
    • 2019
  • Recently, the importance of on-site detection of pathogens has drawn attention in the field of molecular diagnostics. Unlike in a laboratory environment, on-site detection of pathogens is performed under limited resources. In this study, we tried to optimize the experimental conditions for on-site detection of pathogens using a combination of ultra-fast convection polymerase chain reaction (cPCR), which does not require regular electricity, and nucleic acid lateral flow (NALF) immunoassay. Salmonella species was used as the model pathogen. DNA was amplified within 21 minutes (equivalent to 30 cycles of polymerase chain reaction) using ultra-fast cPCR, and the amplified DNA was detected within approximately 5 minutes using NALF immunoassay with nucleic acid detection (NAD) cassettes. In order to avoid false-positive results with NAD cassettes, we reduced the primer concentration or ultra-fast cPCR run time. For singleplex ultra-fast cPCR, the primer concentration needed to be lowered to $3{\mu}M$ or the run time needed to be reduced to 14 minutes. For duplex ultra-fast cPCR, $2{\mu}M$ of each primer set needed to be used or the run time needed to be reduced to 14 minutes. Under the conditions optimized in this study, the combination of ultra-fast cPCR and NALF immunoassay can be applied to on-site detection of pathogens. The combination can be easily applied to the detection of oral pathogens.

A Design of TDMA/TDD MAC Protocol for Full-Duplex Multi-User Voice Communication Systems Based on Sensor Network (센서 네트워크 기반의 다수 사용자간 Full-Duplex 음성 통신 시스템을 위한 TDMA/TDD MAC 프로토콜 설계)

  • Kim, Jisoo;Lee, Jae Hyoung;Cho, Sung Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.3
    • /
    • pp.239-246
    • /
    • 2013
  • The IEEE 802.15.4 offers standard about PHY and MAC layer and features low power, low bandwidth, and low speed data communication. Because of this reason, IEEE 802.15.4 is only within a limited range such as sensor detection and home network; nevertheless, the research about transmission multimedia data like voice packet through wireless sensor networks is conducted widely. In this paper, we proposed the group communication system based on the sensor network. TDMA/TDD MAC based on the IEEE 802.15.4 PHY for voice communication on the sensor network is designed by improvement existing peer-to-peer voice communication on the sensor network and hardware is implemented for group communication. To measure the quality of designed system, mean opinion score (MOS) is obtained from the experiment and verified by using sine wave method. As a result of an experiment, we expect that a many cases of application solution can be developed using presented system.