DOI QR코드

DOI QR Code

Genomics-based Sensitive and Specific Novel Primers for Simultaneous Detection of Burkholderia glumae and Burkholderia gladioli in Rice Seeds

  • Lee, Chaeyeong (Department of Microbiology, Pusan National University) ;
  • Lee, Hyun-Hee (Department of Microbiology, Pusan National University) ;
  • Mannaa, Mohamed (Department of Microbiology, Pusan National University) ;
  • Kim, Namgyu (Department of Microbiology, Pusan National University) ;
  • Park, Jungwook (Department of Microbiology, Pusan National University) ;
  • Kim, Juyun (Department of Microbiology, Pusan National University) ;
  • Seo, Young-Su (Department of Microbiology, Pusan National University)
  • Received : 2018.07.26
  • Accepted : 2018.08.28
  • Published : 2018.12.01

Abstract

Panicle blight and seed rot disease caused mainly by Burkholderia glumae and Burkholderia gladioli is threatening rice cultivation worldwide. The bacteria have been reported as seed-borne pathogens from rice. Accurate detection of both pathogens on the seeds is very important for limiting the disease dissemination. Novel primer pairs targeting specific molecular markers were developed for the robust detection of B. glumae and B. gladioli. The designed primers were specific in detecting the target species with no apparent cross-reactions with other related Burkholderia species at the expected product size. Both primer pairs displayed a high degree of sensitivity for detection of B. glumae and B. gladioli separately in monoplex PCR or simultaneously in duplex PCR from both extracted gDNA and directly preheated bacterial cell suspensions. Limit of detection was as low as 0.1 ng of gDNA of both species and $3.86{\times}10^2cells$ for B. glumae and $5.85{\times}10^2cells$ for B. gladioli. On inoculated rice seeds, the designed primers could separately or simultaneously detect B. glumae and B. gladioli with a detection limit as low as $1.86{\times}10^3cells$ per rice seed for B. glumae and $1.04{\times}10^4cells$ per rice seed of B. gladioli. The novel primers maybe valuable as a more sensitive, specific, and robust tool for the efficient simultaneous detection of B. glumae and B. gladioli on rice seeds, which is important in combating rice panicle blight and seed rot by early detection and confirmation of the dissemination of pathogen-free rice seeds.

Keywords

E1PPBG_2018_v34n6_490_f0001.png 이미지

Fig. 1. Amplification of the expected PCR products (A) Products from bacterial genomic DNA. (B) Products from suspensions of five strains of Burkholderia glumae (Lane 1-5) amplified using Bglu3-f and Bglu3-r primers and six strains of Burkholderia gladioli (Lane 6-11) amplified using Bgla9-f and Bgla9-r primers. Lane 12 is a negative control. Specific bands were clearly visible on the 2% agarose gel at 174 bp for B. glumae and 289 bp for B. gladioli. M denotes the 1 kb DNA ladder.

E1PPBG_2018_v34n6_490_f0002.png 이미지

Fig. 2. Specificity assay for the designed primer pairs (Bglu3 and Bgla9), by amplification of the expected PCR products (A) Products from bacterial genomic DNA. (B) Products from cell suspensions. Lane 1, Burkholderia glumae BGR1; lane 2, B. gladioli BSR3; lane 3, B. cepacia KACC 10189; lane 4, B. cepacia KACC 10190; lane 5, B. cepacia KACC 10337; lane 6, B. cepacia KACC 12679; lane 7, B. cepacia KACC 15010; lane 8, B. kururiensis KACC 12038; lane 9, Burkholderia sp. KJ006; lane 10, B. megalochromosomata KACC 17925; lane 11, B. phymatum KACC 12032; lane 12, B. phytofirmans KACC 12042; lane 13, B. pyrrocinia KACC 17914; lane 14, B. stabilis KACC 12028. Specific bands were clearly visible on the 2% agarose gel at 174 bp for B. glumae BGR1 and 289 bp for B. gladioli BSR3. No bands were observed with the other tested Burkholderia species. M denotes the 1 kb DNA ladder.

E1PPBG_2018_v34n6_490_f0003.png 이미지

Fig. 3. Sensitivity assay for the designed primer pairs (Bglu3 and Bgla9), by amplification of the expected PCR product from genomic DNA (gDNA) from (A) Burkholderia glumae BGR1, (B) B. gladioli BSR3 and (C) mixed sample (1:1) of B. glumae BGR1 and B. gladioli BSR3 in a duplex PCR assay Lane 1, 100 ng gDNA; lane 2, 10 ng gDNA; lane 3, 1 ng gDNA; lane 4, 0.1 ng gDNA; lane 5, 0.01 ng gDNA, lane 6, 1 pg gDNA, lane 7, 0.1 pg; lane 8, no gDNA template. Specific bands were clearly visible on the 2% agarose gel at 174 bp for B. glumae and 289 bp for B. gladioli up to the 0.1 ng gDNA template. M denotes the 1 kb DNA ladder.

E1PPBG_2018_v34n6_490_f0004.png 이미지

Fig. 4. Sensitivity assay for the designed primer pairs (Bglu3 and Bgla9), by amplification of the expected PCR product from bacterial cell suspensions of (A) Burkholderia glumae BGR1, (B) Burkholderia gladioli BSR3 and (C) mixed sample of B. glumae BGR1 and B. gladioli BSR3 in the multiplex PCR assay Lane 1, Overnight cultures; lane 2-10, serially diluted cultures (10-1 to 10-9); lane 11, no cells. Clear specific bands were visible on the 2% agarose gel at 174 bp for B. glumae BGR1 and 289 bp for B. gladioli BSR3 up to the 10-3 dilution (approximately 300 cells for B. glumae and approximately 500 cells for B. gladioli). M denotes the 1 kb DNA ladder.

E1PPBG_2018_v34n6_490_f0005.png 이미지

Fig. 5. Sensitivity assay for the designed primer pairs (Bglu3 and Bgla9), by amplification of the expected PCR product from rice seeds inoculated with different dilutions of Burkholderia glumae BGR1, Burkholderia gladioli BSR3 and mixed co-inoculation Suspensions from rice seeds inoculated with different dilutions of the tested strains or their mix were collected using sterile distilled water containing 0.03% Tween 20 and used as templates for the PCR. Lane 1, 100 ng gDNA from B. glumae BGR1; lane 2, 100 ng gDNA from B. gladioli BSR3; lane 3, cell suspension of overnight culture from B. glumae; lane, 4-7, 10-1 to 10-4 dilutions; lane 8, cell suspension of overnight culture from B. gladioli; lane 9-12, 10-1 to 10-4 dilutions; lane 13, 1:1 cell suspension mix from overnight culture from B. glumae and B. gladioli; lane 14-17, 10-1 to 10-4 dilutions. M, 1 kb DNA ladder; lane 18, un-inoculated surface sterilized rice seeds as a negative control.

Table 1. List of bacterial strains or genomic DNA used in this study

E1PPBG_2018_v34n6_490_t0001.png 이미지

Table 2. Genome sequences of bacterial strain used in this study

E1PPBG_2018_v34n6_490_t0002.png 이미지

References

  1. Awika, J. M. 2011. Major cereal grains production and use around the world. In: Advances in cereal science: Implications to food processing and health promotion, eds. by J. M. Awika, V. Piironen and S. Bean, pp. 1-13. American Chemical Society, Washington, D. C., USA.
  2. Baek, I., Seo, B., Lee, I., Lee, K., Park, S. C., Yi, H. and Chun, J. 2015. Burkholderia megalochromosomata sp. nov., isolated from grassland soil. Int. J. Syst. Evol. Microbiol. 65:959-964. https://doi.org/10.1099/ijs.0.000046
  3. Baek, K. Y., Lee, H. H., Son, G. J., Lee, P. A., Roy, N., Seo, Y. S. and Lee, S. W. 2018. Specific and sensitive primers developed by comparative genomics to detect bacterial pathogens in grains. Plant Pathol. J. 34:104-112.
  4. Cho, H. S., Park, S. Y., Ryu, C. M., Kim, J. F., Kim, J. G. and Park, S. H. 2007. Interference of quorum sensing and virulence of the rice pathogen Burkholderia glumae by an engineered endophytic bacterium. FEMS Microbiol. Ecol. 60:14-23. https://doi.org/10.1111/j.1574-6941.2007.00280.x
  5. Cottyn, B., Van Outryve, M. F., Cerez, M. T., De Cleene, M., Swings, J. and Mew, T. W. 1996. Bacterial disease of rice. II. Characterization of pathogenic bacteria associated with sheath rot complex and grain discoloration of rice in the Philippines. Plant Dis. 80:438-445. https://doi.org/10.1094/PD-80-0438
  6. Cottyn, B., Regalado, E., Lanoot, B., De Cleene, M., Mew, T. W. and Swings, J. 2001. Bacterial populations associated with rice seed in the tropical environment. Phytopathology 91:282-292. https://doi.org/10.1094/PHYTO.2001.91.3.282
  7. Cottyn, B., Debode, J., Regalado, E., Mew, T. W. and Swings, J. 2009. Phenotypic and genetic diversity of rice seed-associated bacteria and their role in pathogenicity and biological control. J. Appl. Microbiol. 107:885-897. https://doi.org/10.1111/j.1365-2672.2009.04268.x
  8. Cui, Z., Ojaghian, M. R., Tao, Z., Kakar, K. U., Zeng, J., Zhao, W., Duan, Y., Vera Cruz, C. M., Li, B., Zhu, B. and Xie, G. 2016. Multiplex PCR assay for simultaneous detection of six major bacterial pathogens of rice. J. Appl. Microbiol. 120:1357-1367. https://doi.org/10.1111/jam.13094
  9. FAO. Feeding the world, eradicating hunger: executive summary. World summit on food security 2009. FAO Database. Version: 2009. URL http://www.fao.org/fileadmin/templates/wsfs/Summit/WSFS_Issues_papers/WSFS_Background_paper_Feeding_the_world.pdf [20 July 2018].
  10. Furuya, N., Ura, H., Iiyama, K., Matsumoto, M., Takeshita, M. and Takanami, Y. 2002. Specific oligonucleotide primers based on sequences of the 16S-23S rDNA spacer region for the detection of Burkholderia gladioli by PCR. J. Gen. Plant Pathol. 68:220-224. https://doi.org/10.1007/PL00013080
  11. Goto, K. and Ohata, K. 1956. New bacterial diseases of rice (brown stripe and grain rot). Ann. Phytopathol. Soc. Jpn. 21:46-47.
  12. Ham, J. H., Melanson, R. A. and Rush, M. C. 2011. Burkholderia glumae: next major pathogen of rice?. Mol. Plant Pathol. 12:329-339. https://doi.org/10.1111/j.1364-3703.2010.00676.x
  13. Hikichi, Y., Okuno, T. and Furusawa, I. 1993. Immunofluorescent antibody technique for detecting Pseudomonas glumae on rice plants. Ann. Phytopathol. Soc. Jpn. 59:477-480. https://doi.org/10.3186/jjphytopath.59.477
  14. Jeong, Y., Kim, J., Kim, S., Kang, Y., Nagamatsu, T. and Hwang, I. 2003. Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis. 87:890-895. https://doi.org/10.1094/PDIS.2003.87.8.890
  15. Jung, B., Park, J., Kim, N., Li, T., Kim, S., Bartley, L. E., Kim, J., Kim, I., Kang, Y., Yun, K., Choi, Y., Lee, H., Ji, S., Lee, K., Kim, B., Shon, J., Kim, W., Liu, K., Yoon, D., Kim, S., Seo, Y. and Lee, J. 2018. Cooperative interactions between seedborne bacterial and air-borne fungal pathogens on rice. Nat. Commun. 9:31. https://doi.org/10.1038/s41467-017-02430-2
  16. Kawanishi, T., Shiraishi, T., Okano Y., Sugawara, K., Hashimoto, M., Maejima, K., Komatsu, K., Kakizawa, S., Yamaji, Y., Hamamoto, H., Oshima, K. and Namba, S. 2011. New detection systems of bacteria using highly selective media designed by SMART: Selective Medium-Design Algorithm Restricted by Two Constraints. PLoS One 6:e16512. https://doi.org/10.1371/journal.pone.0016512
  17. Kawaradani, M., Okada, K. and Kusakari, S. 2000. New selective medium for isolation of Burkholderia glumae from rice seeds. J. Gen. Plant Pathol. 66:234-237. https://doi.org/10.1007/PL00012951
  18. Lee, C. J., Lee, J. T., Kwon, J. H., Kim, B. C. and Park, W. 2005. Occurrence of bacterial soft rot of onion plants caused by Burkholderia gladioli pv. alliicola in Korea. Aust. Plant Pathol. 34:287-292. https://doi.org/10.1071/AP05024
  19. Lee, C. J., Yun, H. S., Jhune, C. S., Cheong, J. C. and Yoo, Y. B. 2010. Occurrence of bacterial soft rot of Pleurotus ostreatus caused by Burkholderia gladioli pv. agaricicola in Korea. J. Plant Pathol. 92:235-240.
  20. Lee, K. Y., Kong, H. G., Choi, K. H., Lee, S. W. and Moon, B. J. 2011. Isolation and identification of Burkholderia pyrrocinia CH-67 to control tomato leaf mold and damping-off on crisphead lettuce and tomato. Plant Pathol. J. 27:59-67. https://doi.org/10.5423/PPJ.2011.27.1.059
  21. Maeda, Y., Shinohara, H., Kiba, A., Ohnishi, K., Furuya, N., Kawamura, Y., Ezaki, T., Vandamme, P., Tsushima, S. and Hikichi, Y. 2006. Phylogenetic study and multiplex PCR-based detection of Burkholderia plantarii, Burkholderia glumae and Burkholderia gladioli using gyrB and rpoD sequences. Int. J. Syst. Evol. Microbiol. 56:1031-1038. https://doi.org/10.1099/ijs.0.64184-0
  22. Nandakumar, R., Bollich, P. A., Shahjahan, A. K. M., Groth, D. E. and Rush, M. C. 2008. Evidence for the soilborne nature of the rice sheath rot and panicle blight pathogen, Burkholderia gladioli 1. Can. J. Plant Pathol. 30:148-154. https://doi.org/10.1080/07060660809507505
  23. Nandakumar, R., Shahjahan, A. K. M., Yuan, X. L., Dickstein, E. R., Groth, D. E, Clark, C. A., Cartwright, R. D. and Rush, M. C. 2009. Burkholderia glumae and B. gladioli cause bacterial panicle blight in rice in the southern United States. Plant Dis. 93:896-905. https://doi.org/10.1094/PDIS-93-9-0896
  24. Nzula, S., Vandamme, P. and Govan, J. R. 2000. Sensitivity of the Burkholderia cepacia complex and Pseudomonas aeruginosa to transducing bacteriophages. FEMS Immunol. Med. Microbiol. 28:307-312. https://doi.org/10.1111/j.1574-695X.2000.tb01491.x
  25. Papaiakovou, M., Pilotte, N., Grant, J. R., Traub, R. J., Llewellyn, S., McCarthy, J. S., Krolewiecki, A. J., Cimino, R., Mejia, R. and Williams, S. A. 2017. A novel, species-specific, real-time PCR assay for the detection of the emerging zoonotic parasite Ancylostoma ceylanicum in human stool. PLoS Negl. Trop. Dis. 11:e0005734. https://doi.org/10.1371/journal.pntd.0005734
  26. Rozen, S. and Skaletsky, H. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132:365-386.
  27. Salles, J. F., De Souza, F. A. and van Elsas, J. D. 2002. Molecular method to assess the diversity of Burkholderia species in environmental samples. Appl. Environ. Microbiol. 68:1595-1603. https://doi.org/10.1128/AEM.68.4.1595-1603.2002
  28. Seo, Y. S., Lim, J., Choi, B. S., Kim, H., Goo, E., Lee, B., Lim, J. S., Choi, I. Y., Moon, J. S., Kim, J. and Hwang, I. 2011. Complete genome sequence of Burkholderia gladioli BSR3. J. Bacteriol. 193:3149. https://doi.org/10.1128/JB.00420-11
  29. Sessitsch, A., Coenye, T., Sturz, A. V., Vandamme, P., Barka, E. A., Salles, J. F., Van Elsas, J. D., Faure, D., Reiter, B., Glick, B. R., Wang-Pruski, G. and Nowak, J. 2005. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plantbeneficial properties. Int. J. Syst. Evol. Microbiol. 55:1187-1192. https://doi.org/10.1099/ijs.0.63149-0
  30. Stackebrandt, E. and Goebel, B. M. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846-849. https://doi.org/10.1099/00207713-44-4-846
  31. Stanier, R. Y., Palleroni, N. J. and Doudoroff, M. 1966. The aerobic pseudomonads: a taxonomic study. J. Gen. Microbiol. 43:159-271. https://doi.org/10.1099/00221287-43-2-159
  32. Takeuchi, T., Sawada, H., Suzuki, F. and Matsuda, I. 1997. Specific detection of Burkholderia plantarii and B. glumae. Jpn. J. Phytopathol. 63:455-462. https://doi.org/10.3186/jjphytopath.63.455
  33. Tao, T., Chen, Q., Bie, X., Lu, F. and Lu, Z. 2015. Mining of novel species-specific primers for PCR detection of Listeria monocytogenes based on genomic approach. World J. Microbiol. Biotechnol. 31:1955-1966. https://doi.org/10.1007/s11274-015-1942-y
  34. Trung, H. M., Van, N. V., Vien, N. V., Lam, D. T. and Lien, M. 1993. Occurrence of rice grain rot disease in Vietnam. Int. Rice Res. Notes 18:30.
  35. Tsushima, S., Wakimoto, S. and Mogi, S. 1986. Selective medium for detecting Pseudomonas glumae Jurita et Tabei, the causal bacterium of grain rot of rice. Ann. Phytopathol. Soc. Jpn. 52:253-259. https://doi.org/10.3186/jjphytopath.52.253
  36. Ura, H., Furuya, N., Iiyama, K., Hidaka, M., Tsuchiya, K. and Matsuyama, N. 2006. Burkholderia gladioli associated with symptoms of bacterial grain rot and leaf-sheath browning of rice plants. J. Gen. Plant Pathol. 72:98-103. https://doi.org/10.1007/s10327-005-0256-6
  37. Vandamme, P., Mahenthiralingam, E., Holmes, B., Coenye, T., Hoste, B., De Vos, P., Henry, D. and Speert, D. P. 2000. Identification and population structure of Burkholderia stabilis sp. nov. (formerly Burkholderia cepacia genomovar IV). J. Clin. Microbiol. 38:1042-1047.
  38. Yabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, Y., Ezaki, T. and Arakawa, M. 1992. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol. 36:1251-1275. https://doi.org/10.1111/j.1348-0421.1992.tb02129.x
  39. Yu, S., Chen, W., Wang, D., He, X., Zhu, X. and Shi, X. 2010. Species-specific PCR detection of the food-borne pathogen Vibrio parahaemolyticus using the irgB gene identified by comparative genomic analysis. FEMS Microbiol. Lett. 307:65-71. https://doi.org/10.1111/j.1574-6968.2010.01952.x
  40. Zaid, A. M., Bonasera, J. M. and Beer, S. V. 2012. OEM-A new medium for rapid isolation of onion-pathogenic and onionassociated bacteria. J. Microbiol. Methods 91:520-526. https://doi.org/10.1016/j.mimet.2012.09.031
  41. Zhang, H., Hanada, S., Shigematsu, T., Shibuya, K., Kamagata, Y., Kanagawa, T. and Kurane, R. 2000. Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. Int. J. Syst. Evol. Microbiol. 50:743-749. https://doi.org/10.1099/00207713-50-2-743