• Title/Summary/Keyword: Ductility capacity

Search Result 1,020, Processing Time 0.029 seconds

Hysteretic Behavior of R/C Shear Wall with Various Lateral Reinforcements in Boundary Columns for Cyclic Lateral Load (경계부재내 횡보강근 배근방법에 따른 R/C전단벽의 반복하중에 대한 이력거동)

  • Seo, Soo-Yeon;Oh, Tae-Gun;Kim, Kyeong-Tae;Yoon, Seong-Joe
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.357-366
    • /
    • 2010
  • This paper presents experimental results about shear wall with various lateral reinforcement details in boundary elements. The research objective is to study the structural behavior of shear wall with boundary column confined by rectangular spiral hoops and headed cross ties developed to improve workability in the fabrication of boundary columns. These two details can be fabricated in a factory and put together on-site after being delivered so that the construction work may be reduced. Main parameters in the experimental study were the types of hoop and cross tie: rectangular spiral hoop and headed cross tie vs. standard hoop and cross tie with hook. Four half scaled shear wall specimens with babel shape were made and tested by applying horizontal cyclic load under constant axial force, 10% of nominal compressive strength of concrete. Based on the test result, it was shown that the shear wall with rectangular spiral hoop and headed cross tie in boundary columns has structural capacity compatible with conventional shear wall. The specimen SW-Hh which has bigger hoop bar and higher volumetric ratio of transverse reinforcements than other showed improved energy dissipating characteristic but it presented a rapid reduction of strength after peak point. The results indicates that, it is necessary to consider volumetric ratio of transverse reinforcements as well as hoop space in designing of shear wall with boundary columns for improved strength and ductility.

The Inelastic Behavior of High Strength Reinforced Concrete Tall Walls (고강도 철근콘크리트 고층형 내력벽의 비탄성 거동에 관한 실험 연구)

  • 윤현도;정학영;최창식;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.139-148
    • /
    • 1995
  • The test results from three one fourth scale models using high strength Reinforced Concrete $f_x=704\;kg/cm^2,\;f_y=5.830\;kg/cm^2$ are presented. Such specimens are considered to represent the critical 3 storics of 60-story tall building of a structural wall system in area of high seismicity respectively. They are tested under inplane vertical and horizontal loading. The main varlable is the level of axial stress. The amounts of vertical and horizontal reinforcement are identical for the three walls testcd. The cross-section of all walls is barbell shape. The aspectratio($h_w/I_w$) of test specimen is 1.8. The aim of the study is to investigate the effects of levels of applied axial stresses on the inelastic behavior of high-strength R /C tall walls. Experimental results of high strength R /C tall walls subjected to axial load and simulated sels rnic loading show that it is possible to insure a ductlle dominant performance by promotmg flex ural yielding of vertical reinforcement and that axial stresses within $O.21f_x$ causes an increase in horizontal load-carrying capacity, initial secant st~ffness characteristics, but an decrease in displacement ductility. energy dissipation index and work damage index of high strength K /C tall walls

The Fractural-Mechanical Properties and Durability of Lightweight Concrete Using the Synthetic Lightweight Aggregate (합성경량골재(SLA)를 사용한 경량콘크리트의 파괴, 역학적 특성 및 내구성)

  • Jo Byung-Wan;Park Seung-Kook;Park Jong-Bin;Daniel C. Jansen
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.19-25
    • /
    • 2005
  • Recycling of waste materials in the construction Industry is a useful method that can cope with an environment restriction of every country. In this study, synthetic lightweight aggregates are manufactured with recycled plastic and fly ash with 12 percent carbon. Nominal maximum-size aggregates of 9.5 mm were produced with fly ash contents of 0, 35, and $80\%$ by the total mass of the aggregate. An expanded clay lightweight aggregate and a normal-weight aggregate were used as comparison. Gradation, density, and absorption capacity are reported for the aggregates. Five batches of concrete were made with the different coarse aggregate types. Mechanical properties of the concrete were determined including density, compressive strength, elastic modulus, splitting tensile strength, fracture toughness, and fracture energy. Salt-scaling resistance, a concrete durability property, was also examined. Compressive and tensile strengths were lower for the synthetic aggregates; however, comparable fracture properties were obtained. Relatively low compressive modulus of elasticity was found for concretes with the synthetic lightweight aggregate, although high ductility was also obtained. As nv ash content of the synthetic lightweight aggregate increased, all properties of the concrete were improved. Excellent salt-scaling resistance was obtained with the synthetic lightweight aggregate containing 80 percent fly ash.

Analytical Model of Beam-Column Joint for Inelastic Behavior Under Various Loading History (철근콘크리트 보-기둥 접합부 해석모델)

  • 유영찬;서수연;이원호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.120-130
    • /
    • 1994
  • The purpose of this study is to propose the analytical model for the hysteretic behavior of Reinforced Concrete bearn-column joints under various loading history. Discrete line elernents , YVith inelastic rotational spring was adopted to consider the movement of plastic hinging zone influenced by the details of longitudinal reinforcements. Also hysteretic model was constructed by excluding such variables which can not be utilized in dynamic analysis of Reinforced Concrete. structure that it will be adoptable in two-dimensional inelastic frame ardysis with 6-DOF. From the analysis of previous test results, it was found that stiffness deterioration caused by inelastic hysteretic loadings can be predicted by the functron of basic pinching coefficients, ductility ratio.and yield strength ratio of members. Strength degradation coefficients were newly proposed to explain the difference of inelastic behavior of members caused by spacing ratio of transverse steel and sectlon aspect ratio. The energy dissipation capacities calculated using the analytical model proposed in thls paper show a good agreements w~lh test results by an error of 10~20%.

The Limiting Drift and Energy Dissipation Ratio for Shear Walls Based on Structural Testing (전단벽의 최소 층변위 및 에너지 소산성능)

  • ;;N.M.Hawins
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.335-343
    • /
    • 1998
  • Recently, new experimental criteria for reinforced concrete frame structures in high seismic regions have been reported in United States. The objective of the criteria is to get more reliable test data which are valid to compare with other test data done by different researchers. The criteria precribe test method of specimens, analysis method of test data, and limiting values needed to specimens like drift angle, energey dissipation ratio, stiffness, and strength. These criteria might be usefel to get objective conclusion. Shear wall structures, which belong to one of earthquake resisting systems, also need this kind of criteria. But, the general response of shear wall structures is a little bit different from that of frame structures since shear wall restrains the horizontal displacement caused by horizontal force and increases the stiffness and strength. The objective of this paper is to propose a criterion for limiting drift and energy dissipation ratio of shear walls based on structural testing. These are the most important values for presenting the capacity of shear walls. Limiting drift and energy dissipation ratios were examined for tests on shear walls having ductile type failures. Test data were analyzed and compared to the results for a suggested acceptance criteria that involve a limiting drift that is a function of aspect ratio and a limiting energy dissipation ratio that is a function of displacement ductility and damping.

Earthquake Simulation Tests of A 1:5 Scale Gravity Load Designed 3-Story Reinforced Concrete Frame (중력하중 설계된 1:5 축소 3층 철근콘크리트 골조의 지진모의실험)

  • 이한선;우성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.241-252
    • /
    • 1998
  • The objective of the research stated herein is to observe the actual responses of a low-rise nonseismic moment-resisting reinforced concrete frame subjected to varied levels of earthquake ground motions. First, the reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used and the model was manufactured according to the similitude law. This model was, then, subjected to the shaking table motions simulating Taft N21E component earthquake ground motions, whose peak ground accelations (PGAs) were modified to 0.12g, 0.2g, 0.3g, and 0.4g. The lateral accelerations and displacements at each story and local deformations at the critical reginos of the structure were measured. The base shear was measured by using self-made load cells. Before and after each earthquake simulation test, free vibration tests were performed to find the change in the natural period and damping ratio of the model. The test data on the global and local behaviors are interpreted. The model showed the linear elastic behavior under the Taft N21E motion with the PGA if 0.12g, which represents the design earthquake in Korea. The maximum base shear was 1.8tf, approximately 4.7 times the design base shear. The model revealed fairly good resistance to the higher level of earthquake simulation tests. The main components of its resistance to the high level of earthquakes appeared to be 1) the high overstrength, 2) the elongation of the fundamental period, and 3) the minor energy dissipation by inelastic deformations. The drifts of the model under these tests were approximately within the allowable limit.

Axial Load Behavior of Concrete Cylinders Confined with Fiber-Sheet and Steel-Plate Composites Plate (FSP) (섬유-강판 복합플레이트로 보강된 콘크리트 압축부재의 압축성능)

  • Cho, Baik-Soon;Choi, Eunsoo;Chung, Young-Soo;Kim, Yeon-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.331-340
    • /
    • 2011
  • The application of newly developed fiber-sheet and steel-plate composite plate (FSP) as a means of improving strength and ductility capacity of concrete cylinders under axial compression load through confinement is investigated experimentally in this study. An experimental investigation involves axial load tests of two types of FSP strengthening material, two anchoring methods, and three concrete strengths. The FSP-confined cylinder tests showed that FSP provided a substantial gain in compressive strength and deformability. The performance of FRP-confined cylinders was influenced by type of the FSP strengthening material, the anchoring method, and concrete compressive strength. The FSP failure strains obtained from FSP-confined cylinder tests were higher than those from FRP-confined cylinder tests. The magnitude of FSP failure strain was related to the FSP composite effectiveness. The effects of FSP confinement on the concrete microstructure were examined by evaluating the internal concrete damage using axial, radial, and volumetric strains. From the observations obtained in this investigation, it is believed that FSP is one of the best solutions for the confinement of concrete compressive members.

Effect of Loading Rate on the Deformation Behavior of SA508 Gr.1a Low Alloy Steel and TP316 Stainless Steel Pipe Materials at RT and 316℃ (상온과 316℃에서 SA508 Gr.1a 저합금강 배관과 TP316 스테인리스강 배관의 변형거동에 미치는 하중속도의 영향)

  • Kim, Jin Weon;Choi, Myung Rak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.383-390
    • /
    • 2015
  • This study conducted tensile tests on SA508 Gr.1a low alloy steel and SA312 TP316 stainless steel piping materials under various strain rates at room temperature (RT) and $316^{\circ}C$ to investigate the effects of loading rate on the deformation behavior of nuclear piping materials. At RT, the deformation behavior for both pipe materials showed a typical loading rate dependence, i.e., the strength increased and the ductility decreased as the loading rate increased. At $316^{\circ}C$, however, the strength and elongation of SA508 Gr.1a low alloy steel decreased as the loading rate increased, and its reduction of area non-linearly varied with the loading rate. For SA312 TP316 stainless steel, the strength, elongation, and reduction of area at $316^{\circ}C$ were almost the same regardless of the loading rate. At both temperatures, the strain hardening capacity was nearly independent of the loading rate for SA508 Gr.1a low alloy steel, while it decreased with increasing loading rate for SA312 TP316 stainless steel.

Static Behavior of Steel-Concrete Composite Beam with Perfobond Rib Shear Connector (Perfobond rib 전단연결재가 설치된 강.콘크리트 합성보의 정적거동)

  • Ahn, Jin Hee;Chung, Hamin;Kim, Sang Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.421-432
    • /
    • 2009
  • In this study, push-out and static loading tests were conducted to evaluate the behavioral characteristics of composite beams with a perfobond rib shear connector. The shear capacity of the perfobond rib was found to be proportional to its concrete strength, which is in turn affected by the increase in the concrete end-bearing strength and concrete dowel action to resist the shear force. The relative slips of the push-out specimen, however, which was used to assess the ductility of the shear connector, increased to some extent, but it no longer increased when it reached the critical concrete strength because of the flexibility of the transverse rebar in the rib hole. The static-loading-test results revealed a crack on the concrete slab in the composite beam with a perfobond rib on the side of the rib hole and transverse rebar for the applied moment and shear force to the rib hole, depending on the static loading. The shear resistance characteristics of the perfobond rib shear connector were found to resist the shear force from the relative slip on the interface of the composite beam. Thus, the sectional effect of the shear connector to the composite beam with a perfobond rib should be considered when designing the composite beam because the behavior of the composite beam can change owing to the shear connector.

A Theoretical Study on the FRP Retrofit of Existing Circular Bridge Piers for Seismic Performance Enhancement (기존 원형교각의 내진성능 향상을 위한 FRP 보강에 대한 이론적 연구)

  • Kwon Tae-Gyu;Choi Young-Min;Hwang Yoon-Knok;Yoon Soon-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.61-69
    • /
    • 2004
  • The bridge piers under service suffered a brittle failure due to the deterioration of lap-spliced longitudinal reinforcement without developing its flexural capacity or ductility. The earthquake induced lateral force results in tension which causes bond-slip failure at the lap-spliced region in circular bridge piers. In this case, such a brittle failure can be controlled by the seismic retrofit using FRP laminated circular tube. The retrofitted piers using FRP laminated circular tube showed significant improvement in seismic performance due to FRP's confinement effect. This paper presents the analytical results on the seismic strengthening effect of circular bridge piers with poor lap-splice details and strengthened with FRP laminated circular tube. FRP's confinement effect is predicted by the classical elasticity solution for the laminated circular tube manufactured with several layers. The FRP laminated circular tube induces the flexural failure instead of a bond-slip failure of the circular reinforced concrete piers under seismic induced lateral forces. To investigate the correctness and effectiveness of analytical solution derived in this study, the analytical results were compared with the experimental data and it was confirmed that the results were correlated well each other, The effects on the confinement of FRP laminated circular tube, such as the number of layers, the fiber orientations, and the mechanical properties, were investigated. From the parametric study, it was found that the number of layers, the fiber orientations, and the major Young's modulus (E11) of the FRP laminated circular tube were the dominant parameters affecting the confinement of reinforced concrete circular bridge piers.