DOI QR코드

DOI QR Code

Axial Load Behavior of Concrete Cylinders Confined with Fiber-Sheet and Steel-Plate Composites Plate (FSP)

섬유-강판 복합플레이트로 보강된 콘크리트 압축부재의 압축성능

  • 조백순 (인제대학교 건설기술연구소 토목공학과) ;
  • 최은수 (홍익대학교 토목공학과) ;
  • 정영수 (중앙대학교 사회기반시스템공학부) ;
  • 김연욱 (계명대학교 신소재공학과)
  • Received : 2011.06.13
  • Accepted : 2011.07.09
  • Published : 2011.08.31

Abstract

The application of newly developed fiber-sheet and steel-plate composite plate (FSP) as a means of improving strength and ductility capacity of concrete cylinders under axial compression load through confinement is investigated experimentally in this study. An experimental investigation involves axial load tests of two types of FSP strengthening material, two anchoring methods, and three concrete strengths. The FSP-confined cylinder tests showed that FSP provided a substantial gain in compressive strength and deformability. The performance of FRP-confined cylinders was influenced by type of the FSP strengthening material, the anchoring method, and concrete compressive strength. The FSP failure strains obtained from FSP-confined cylinder tests were higher than those from FRP-confined cylinder tests. The magnitude of FSP failure strain was related to the FSP composite effectiveness. The effects of FSP confinement on the concrete microstructure were examined by evaluating the internal concrete damage using axial, radial, and volumetric strains. From the observations obtained in this investigation, it is believed that FSP is one of the best solutions for the confinement of concrete compressive members.

콘크리트 공시체의 압축강도와 연성성능을 향상시키기 위하여 섬유-강판 복합플레이트 fiber-sheet and steel-plate composite plate(FSP))의 적용을 실험적으로 연구하였다. FSP 보강재료, 앵커볼트 설치방법, 콘크리트 압축강도 등이 고려된 FSP 보강 콘크리트 공시체의 압축실험을 실시하였다. FSP 보강 콘크리트 공시체의 압축실험결과, FSP는 콘크리트 공시체의 압축강도와 변형저항성능을 크게 향상시켰다. FSP 보강 콘크리트 공시체의 압축성능은 FSP 보강재 종류, 앵커볼트 사용방법, 콘크리트 압축강도에 영향을 받는 것으로 나타났다. 앵커볼트를 사용한 FSP 보강 콘크리트 공시체 실험에서 측정된 FSP의 파단변형률은 FRP 보강 콘크리트 압축부재 실험에서 측정된 FRP 파단변형률보다 크게 측정되었다. FSP 파단변형률의 크기는 FSP의 보강효과에 영향을 미친다. FSP 보강 콘크리트 공시체 압축실험에서 측정된 축방향변형률, 원주방향변형률, 체적 변형률에 의한 FSP 내부 콘크리트의 손상상태를 분석하여 FSP 보강효과를 평가하였다. 연구결과, FSP 보강공법은 콘크리트 압축부재의 보강방법으로 실용적 기법이라 판단된다.

Keywords

References

  1. 최은수, 최승환(2011) FRP로 구속된 콘크리트 압축부재의 구속효과 분석, 대한토목학회논문집, 대한토목학회, 제31권 제1A호, pp. 19-24.
  2. Demers, M. and Naela, K.W. (1999) Confinement of reinforced concrete columns with fibre-reinforced composite sheets-an experimental Study, Canadian Journal of Civil Engineering, Vol. 26, pp. 226-241. https://doi.org/10.1139/l98-067
  3. Chaallal, O., Hussan, M., and Shahawy, M. (2003) Confinement model for axially loaded short rectangular columns strengthened with fiber-reinforced polymer wrapping, ACI Structural Journal, Vol. 100, No. 2, pp. 215-221.
  4. Bisby, L.A., Dent, A.J.S., and Green, M. (2005) Comparison of confinement models for fiber-reinforced polymer-wrapped concrete, ACI Structural Journal, Vol. 102, No. 1, pp. 62-72.
  5. Matthys, S., Toutanji, H., Audenaert, K., and Taerwe, L. (2005) Axial load behavior of lager-scale columns confined with fiberreinforced polymer composite, ACI Structural Journal, Vol. 102, No. 2, pp. 258-267.
  6. Xiao, Y. and Wu, H. (2000) Compressive behavior of concrete confined by carbon fiber composite jackets, Journal of Materials in Civil Engineering, ASCE, Vol. 12, No. 2, pp. 139-146. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:2(139)
  7. Moran, D.A. and Pantelides, C.P. (2002) Stress-strain model for fiber-reinforced polymer-confined concrete, Journal of Composites for Construction, ASCE, Vol. 6, No. 4, pp. 233-240. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:4(233)
  8. Carey, S.A. and Harries, K.A. (2005) Axial behavior and modeling if confined small-, Medium-, and larger-scale circular sections with carbon fiber-reinforced polymer jacket, ACI Structural Journal, Vol. 102, No. 4, pp. 596-604.
  9. Saenz, N. and Pantelides, C.P. (2007) Strain-basement confinement model for FRP-confined concrete, Journal of Structural Engineering, ASCE, Vol. 133, No. 6, pp. 825-833. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:6(825)
  10. Jones, R.M. (1999) Mechanics of composite materials, 2nd Ed., Taylor & Francis, Inc., Philadelphia, PA, pp. 519.
  11. Pantelides, C.P. and Yan, Z. (2007) Confined model of concrete with externally bonded FRP Jackets or posttensioned FRP shells, Journal of Structural Engineering, ASCE, Vol. 133, No. 9, pp. 1288-1296. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:9(1288)
  12. Mirmiran, A. and Shahawy, M. (1997) Behavior of concrete confined by fiber composites, Journal of Structural Engineering, ASCE, Vol. 123, No. 5, pp. 583-590. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(583)
  13. Tautanji, H.A. (1999) Stress-strain characteristic of concrete columns externally confined with advanced fiber Composite Sheet, ACI Materials Journal, Vol. 96, No. 3, pp. 397-404.
  14. Spoelstra, M.R. and Monti, G. (1999) FRP-Confined concrete model, journal of composites for construction, ASCE, Vol. 3, No. 3, pp. 143-150. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143)
  15. Teng, J.G. and Lam, L. (2004) Behavior and modeling of fiber reinforced polymer-confined concrete, Journal of Structural Engineering, ASCE, Vol. 130, No. 11, pp. 1713-1723. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1713)
  16. Malik, A.R. and Foster, S.J. (2010) Carbon fiber-reinforced polymer confined reactive powder concrete columns-experimental investigation, ACI Structural Journal, Vol. 107, No. 3, pp. 263-271.