• Title/Summary/Keyword: Ductile Design

Search Result 376, Processing Time 0.035 seconds

Ductility of Circular Hollow Columns with Internal Steel Tube (강관 코아 합성 중공 기둥의 연성 거동 연구)

  • 강영종;한승룡;박남회
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.183-188
    • /
    • 2002
  • In locations where the cost or concrete is relatively high, or in situations where the weight or concrete members is to be kept to a minimum, it may be economical to use hollow reinforced concrete vertical members. Hollow reinforced concrete columns with low axial load, moderate longitudinal steel percentage, and a reasonably thick wall were found to perform in a ductile manner at the flexural strength, similar to solid columns. However, hollow reinforced concrete columns with high axial load, high longitudinal steel percentage, and a thin wall were found to behave in a brittle manner at the flexural strength, since the neutral axis is forced to occur away from the inside face of the tube towards the section centroid and, as a result, crushing of concrete occurs near the unconfined inside face of the section. If, however, a steel tube is placed near the inside face of a circular hollow column, the column can be expected not to fail in a brittle manner by disintegration of the concrete in the compression zone. Design recommendation and example by moment-curvature analysis program for curvature ductility are presented. Theoretical moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted providing the stress-strain relation for the concrete and steel are known. In this paper, a unified stress-stain model for confined concrete by Mander is developed for members with circular sections.

  • PDF

A Study on the Characteristic of Anti-corrosive Performance for the Cable Members (케이블 부재의 방청성능 특성에 관한 연구)

  • Ahn, Seung-Whan;Han, Sang-Eul;Lee, Sang-Ju
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.66-72
    • /
    • 2006
  • Recently nonlinear materials are used in construction of building and bridge then various structure formats are achieved positively. one of them, cable members, are the interesting study object which increase rigidity of a total structure by inducing tension. The way of construction using cable members is increasing, so the technology of design and construction are developing. Protection Fretting Fatigue is very important to maintain efficiency of cable member permanently. However, recognition of this is somewhat humble and this paper considers anti-corrosive performance of cable.

  • PDF

Seismic Behavior of High-Strength Concrete Square Short Columns Confined in Thin Steel Shell

  • Han, Byung-Chan;Yun, Hyun-Do;Chung, Soo-Young
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2000
  • Experiments were carried out to investigate the seismic behaviors, such as lateral strength, ductility and energy-dissipation capacity. of high-strength concrete (HSC) square short column confined in thin steel shell. The primary objective of the study was to investigate the suitability of using HSC square columns confined in thin steel shell in region of moderate-to-high seismic risk. A total of six columns, consisting of two ordinarily reinforced concrete square short columns and four reinforced concrete square short columns confined in thin steel shell was tested. Column specimens, short columns in a moment resisting frame with girder. were tested under a constant axial and reversed cyclic lateral loads. To design the specimens. transverse reinforcing methods, level of axial load applied, and the steel tube width-thickness ratio (D/t) were chosen as main parameters. Test results were also discussed and compared in the light of improvements in general behaviors, ductility, and energy-absorption capacities. Compared to conventionally reinforced concrete columns, the HSC columns confined in thin steel shell had similar load-displacement hysteretic behavior but exhibited greater energy-dissipation characteristics . It is concluded that, in strong earthquake areas, the transverse reinforcing method by using a thin steel shell (D/t=125) is quite effective to make HSC short columns with very strong and ductile.

  • PDF

Tensile Behavior and Fracture Properties of Ductile Hybrid FRP Reinforcing Bar for Concrete Reinforcement (콘크리트 보강용 고연성 하이브리드 FRP 보강근의 인장 및 파괴 특성)

  • Park, Chan-Gi;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.41-51
    • /
    • 2004
  • FRP re-bar in concrete structures could be used as a substitute of steel re-bars for that cases in which aggressive environment produce high steel corrosion, or lightweight is an important design factor, or transportation cost increase significantly with the weight of the materials. But FRP fibers have only linearly elastic stress-strain behavior; whereas, steel re-bar has linear elastic behavior up to the yield point followed by large plastic deformation and strain hardening. Thus, the current FRP re-bars are not suitable concrete reinforcement where a large amount of plastic deformation prior to collapse is required. The main objectives of this study in to evaluate the tensile behavior and the fracture mode of hybrid FRP re-bar. Fracture mode of hybrid FRP re-bar is unique. The only feature common to the failure of the hybrid FRP re-bars and the composite is the random fiber fracture and multilevel fracture of sleeve fibers, and the resin laceration behavior in both the sleeve and the core areas. Also, the result of the tensile and interlaminar shear stress test results of hybrid FRP re-bar can provide its excellent tensile strength-strain and interlaminar stress-strain behavior.

A Study on the Methods of Enhancing the Seismic Performance for Reinforced Concrete School Buildings - Ordinary Moment Frame (철근콘크리트 보통모멘트 골조형식 학교건축물의 내전성능 향상 방안 연구)

  • Kim, Hyeon-Jin;Lee, Sang-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.74-81
    • /
    • 2009
  • In this study, the seismic performance of RC school buildings which were not designed according to earthquake-resistance design code were evaluated by using response spectrum and push-over analyses. The torsional amplification effect due to plan irregularity is considered and then the efficiency of seismic retrofitting methods such as RC shear wall, steel frame, RC frame and PC wing wall was investigated. The analysis result indicate that the inter-story drift concentrated in the first floor and most plastic hinge forms at the column of the first story. Among the retrofitting methods, the PC wing wall has the highest seismic performance in strength and story drift aspect. Especially, it can make building ductile behavior due to the concentrated inter-story drift at the first column hinge is distributed overall stories. The axial force, shear force and moment magnitude of existing elements significantly decreased after retrofitting. However, the axial and shear force of the elements connected to the additional retrofitting elements increased, and especially the boundary columns at the end of the retrofitting shear wall should be reinforced for assuring the enhancement of seismic performance.

Study of Tube Expansion to Produce Hair-Pin Type Heat Exchanger Tubes using the Finite Element Method (유한요소법을 이용한 헤어핀 형 열 교환기의 튜브 확관에 대한 연구)

  • Hong, S.;Hyun, H.;Hwang, J.
    • Transactions of Materials Processing
    • /
    • v.23 no.3
    • /
    • pp.164-170
    • /
    • 2014
  • To predict the deformation and fracture during tube expansion using the finite element (FE) method, a material model is considered that incorporates the damage evolution due to the deformation. In the current study, a Rice-Tracey model was used as the damage model with inclusion of the hydrostatic stress term. Since OFHC Cu is not significantly affected by strain rate, a Hollomon flow stress model was used. The material parameters in each model were obtained by using an optimization method. The objective function was defined as the difference between the experimental measurements and FE simulation results. The parameters were determined by minimizing the objective function. To verify the validity of the FE modeling, cross-verification was conducted through a tube expansion test. The simulation results show reasonable agreement with the experiments. The design for a minimum diameter of expansion tube using the FE modeling was verified by a simplified tube expansion test and simulation results.

Shear strength analysis and prediction of reinforced concrete transfer beams in high-rise buildings

  • Londhe, R.S.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.39-59
    • /
    • 2011
  • Results of an experimental investigation on the behavior and ultimate shear capacity of 27 reinforced concrete Transfer (deep) beams are summarized. The main variables were percent longitudinal(tension) steel (0.28 to 0.60%), percent horizontal web steel (0.60 to 2.40%), percent vertical steel (0.50to 2.25%), percent orthogonal web steel, shear span-to-depth ratio (1.10 to 3.20) and cube concrete compressive strength (32 MPa to 48 MPa).The span of the beam has been kept constant at 1000 mm with100 mm overhang on either side of the supports. The result of this study shows that the load transfer capacity of transfer (deep) beam with distributed longitudinal reinforcement is increased significantly. Also, the vertical shear reinforcement is more effective than the horizontal reinforcement in increasing the shear capacity as well as to transform the brittle mode of failure in to the ductile mode of failure. It has been observed that the orthogonal web reinforcement is highly influencing parameter to generate the shear capacity of transfer beams as well as its failure modes. Moreover, the results from the experiments have been processed suitably and presented an analytical model for design of transfer beams in high-rise buildings for estimating the shear capacity of beams.

Behaviour of large fabricated stainless steel beam-to-tubular column joints with extended endplates

  • Wang, Jia;Uy, Brian;Li, Dongxu
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.141-156
    • /
    • 2019
  • This paper presents the flexural behaviour of stainless steel beam-to-tubular column joints with extended endplates subjected to static loading. Moment-rotation relationships were investigated numerically by using Abaqus software with geometric and material nonlinearity considered. The prediction of damages among components was achieved through ductile damage models, and the influence of initial geometric imperfections and residual stresses was evaluated in large fabricated stainless steel joints involving hollow columns and concrete-filled columns. Parametric analysis was subsequently conducted to assess critical factors that could affect the flexural performance significantly in terms of the initial stiffness and moment resistance. A comparison between codes of practice and numerical results was thereafter made, and design recommendations were proposed for further applications. Results suggest that the finite element model can predict the structural behaviour reasonably well with the component damage consistent with test outcomes. Initial geometric imperfections and residual stresses are shown to have little effect on the moment-rotation responses. A series of parameters that can influence the joint behaviour remarkably include the strain-hardening exponents, stainless steel strength, diameter of bolts, thickness of endplates, position of bolts, section of beams and columns. AS/NZS 2327 is more reliable to predict the joint performance regarding the initial stiffness and moment capacity compared to EN 1993-1-8.

Experimental Study on the Flexural Capacity of the U-Flanged Truss Hybrid Beam (U-플랜지 트러스 복합보의 휨 내력에 대한 실험 연구)

  • Oh, Myoung Ho;Kim, Young Ho;Kim, Myeong Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.123-130
    • /
    • 2018
  • U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars welded on the upper and lower sides. The hybrid beam with U-flanged steel truss is made in the construction site through pouring the concrete, and designated as U-flanged truss hybrid beam. In this study the structural experiments on the 4 hybrid beams with the proposed basic shapes were performed, and the flexural capacities from the tests were compared with those from the theoretical approach. The failure modes of each specimen were quite similar. The peak load was reached with the ductile behavior after yielding, and the failure occurred through the concrete crushing. The considerable increasement of deformation was observed up to the concrete crushing. The composite action of concrete and steel member was considered to be reliable from the behavior of specimens. The flexural strength of hybrid beam has been evaluated exactly using the calculation method applied in the boubly reinforced concrete beam. The placement of additional rebars in the bottom instead of upper side is proposed for the efficient design of U-flanged truss hybrid beam.

Improving the hysteretic behavior of Concentrically Braced Frame (CBF) by a proposed shear damper

  • Ghamari, Ali;Haeri, Hadi;Khaloo, Alireza;Zhu, Zheming
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.383-392
    • /
    • 2019
  • Passive steel dampers have shown favorable performance in last earthquakes, numerical and experimental studies. Although steel dampers are more affordable than other types of damper, they are not economically justified for ordinary buildings. Therefore, in this paper, an innovative steel damper with shear yielding mechanism is introduced, which is easy to fabricate also can be easily replaced after sever earthquakes. The main goal of implementing such a mechanism is to control the possible damage in the damper and to ensure the elastic behavior of other structural components. The numerical results indicate an enhancement of the hysteretic behavior of the concentrically braced frames utilizing the proposed damper. The proposed damper change brittle behavior of brace due to buckling to ductile behavior due to shear yielding in proposed damper. The necessary relations for the design of this damper have been presented. In addition, a model has been presented to estimate load-displacement of the damper without needing to finite element modeling.