• Title/Summary/Keyword: Dual-particle imaging

Search Result 5, Processing Time 0.019 seconds

Design and Fabrication of CLYC-Based Rotational Modulation Collimator (RMC) System for Gamma-Ray/Neutron Dual-Particle Imager

  • Kim, Hyun Suk;Lee, Jooyub;Choi, Sanghun;Bang, Young-bong;Ye, Sung-Joon;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.112-119
    • /
    • 2021
  • Background: This work aims to develop a new imaging system based on a pulse shape discrimination-capable Cs2LiYCl6:Ce (CLYC) scintillation detector combined with the rotational modulation collimator (RMC) technique for dual-particle imaging. Materials and Methods: In this study, a CLYC-based RMC system was designed based on Monte Carlo simulations, and a prototype was fabricated. Therein, a rotation control system was developed to rotate the RMC unit precisely, and a graphical user interface-based software was also developed to operate the data acquisition with RMC rotation. The RMC system was developed to allow combining various types of collimator masks and detectors interchangeably, making the imaging system more versatile for various applications and conditions. Results and Discussion: Operational performance of the fabricated system was studied by checking the accuracy and precision of the collimator rotation and obtaining modulation patterns from a gamma-ray source repeatedly. Conclusion: The prototype RMC system showed reliability in its mechanical properties and reproducibility in the acquisition of modulation patterns, and it will be further investigated for its dual-particle imaging capability with various complex radioactive source conditions.

Development of a dual-mode energy-resolved neutron imaging detector: High spatial resolution and large field of view

  • Wenqin Yang;Jianrong Zhou;Jianqing Yang;Xingfen Jiang;Jinhao Tan;Lin Zhu;Xiaojuan Zhou;Yuanguang Xia;Li Yu;Xiuku Wang;Haiyun Teng;Jiajie Li;Yongxiang Qiu;Peixun Shen;Songlin Wang;Yadong Wei;Yushou Song;Jian Zhuang;Yubin Zhao;Junrong Zhang;Zhijia Sun;Yuanbo Chen
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2799-2805
    • /
    • 2024
  • Energy-resolved neutron imaging is an effective way to investigate the internal structure and residual stress of materials. Different sample sizes have varying requirements for the detector's imaging field of view (FOV) and spatial resolution. Therefore, a dual-mode energy-resolved neutron imaging detector was developed, which mainly consisted of a neutron scintillator screen, a mirror, imaging lenses, and a time-stamping optical fast camera. This detector could operate in a large FOV mode or a high spatial resolution mode. To evaluate the performance of the detector, the neutron wavelength spectra and the multiple spatial resolution tests were conducted at CSNS. The results demonstrated that the detector accurately measured the neutron wavelength spectra selected by a bandwidth chopper. The best spatial resolution was about 20 ㎛ in high spatial resolution mode after event reconstruction, and a FOV of 45.0 mm × 45.0 mm was obtained in large FOV mode. The feasibility was validated to change the spatial resolution and FOV by replacing the scintillator screen and adjusting the lens magnification.

Optimization of image reconstruction method for dual-particle time-encode imager through adaptive response correction

  • Dong Zhao;Wenbao Jia;Daqian Hei;Can Cheng;Wei Cheng;Xuwen Liang;Ji Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1587-1592
    • /
    • 2023
  • Time-encoded imagers (TEI) are important class of instruments to search for potential radioactive sources to prevent illicit transportation and trafficking of nuclear materials and other radioactive sources. The energy of the radiation cannot be known in advance due to the type and shielding of source is unknown in practice. However, the response function of the time-encoded imagers is related to the energy of neutrons or gamma-rays. An improved image reconstruction method based on MLEM was proposed to correct for the energy induced response difference. In this method, the count vector versus time was first smoothed. Then, the preset response function was adaptively corrected according to the measured counts. Finally, the smoothed count vector and corrected response were used in MLEM to reconstruct the source distribution. A one-dimensional dual-particle time-encode imager was developed and used to verify the improved method through imaging an Am-Be neutron source. The improvement of this method was demonstrated by the image reconstruction results. For gamma-ray and neutron images, the angular resolution improved by 17.2% and 7.0%; the contrast-to-noise ratio improved by 58.7% and 14.9%; the signal-to-noise ratio improved by 36.3% and 11.7%, respectively.

Comparative study of the pulse shape discrimination (PSD) performance of pixelated stilbene and plastic scintillator (EJ-276) arrays for a coded-aperture-based hand-held dual-particle imager

  • Jihwan Boo ;Manhee Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1677-1686
    • /
    • 2023
  • As the demand for the detection of special nuclear materials (SNMs) increases, the use of imaging instruments that can sensitively image both gamma-ray and neutron signatures has become necessary. This study compared the pulse shape discrimination (PSD) performance of gamma/neutron events when employing either a pixelated stilbene or a plastic (EJ-276) scintillator array coupled to a silicon photomultiplier (SiPM) array in a dual-particle imager. The stilbene array allowed a lower energy threshold above which neutron and gamma-ray events can be clearly distinguished. A greater number of events can, therefore, be used when forming both gamma-ray and neutron images, which shortens the time required to acquire the images by nearly seven times.

Feasibility study of using triple-energy CT images for improving stopping power estimation

  • Yejin Kim;Jin Sung Kim ;Seungryong Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1342-1349
    • /
    • 2023
  • The planning accuracy of charged particle therapy (CPT) is subject to the accuracy of stopping power (SP) estimation. In this study, we propose a method of deriving a pseudo-triple-energy CT (pTECT) that can be achievable in the existing dual-energy CT (DECT) systems for better SP estimation. In order to remove the direct effect of errors in CT values, relative CT values according to three scanning voltage settings were used. CT values of each tissue substitute phantom were measured to show the non-linearity of the values thereby suggesting the absolute difference and ratio of CT values as parameters for SP estimation. Electron density, effective atomic number (EAN), mean excitation energy and SP were calculated based on these parameters. Two of conventional methods were implemented and compared to the proposed pTECT method in terms of residuals, absolute error and root-mean-square-error (RMSE). The proposed method outperformed the comparison methods in every evaluation metrics. Especially, the estimation error for EAN and mean excitation using pTECT were converging to zero. In this proof-of-concept study, we showed the feasibility of using three CT values for accurate SP estimation. Our suggested pTECT method indicates potential clinical utility of spectral CT imaging for CPT planning.