• Title/Summary/Keyword: Dual-image

Search Result 454, Processing Time 0.025 seconds

Optimization of image reconstruction method for dual-particle time-encode imager through adaptive response correction

  • Dong Zhao;Wenbao Jia;Daqian Hei;Can Cheng;Wei Cheng;Xuwen Liang;Ji Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1587-1592
    • /
    • 2023
  • Time-encoded imagers (TEI) are important class of instruments to search for potential radioactive sources to prevent illicit transportation and trafficking of nuclear materials and other radioactive sources. The energy of the radiation cannot be known in advance due to the type and shielding of source is unknown in practice. However, the response function of the time-encoded imagers is related to the energy of neutrons or gamma-rays. An improved image reconstruction method based on MLEM was proposed to correct for the energy induced response difference. In this method, the count vector versus time was first smoothed. Then, the preset response function was adaptively corrected according to the measured counts. Finally, the smoothed count vector and corrected response were used in MLEM to reconstruct the source distribution. A one-dimensional dual-particle time-encode imager was developed and used to verify the improved method through imaging an Am-Be neutron source. The improvement of this method was demonstrated by the image reconstruction results. For gamma-ray and neutron images, the angular resolution improved by 17.2% and 7.0%; the contrast-to-noise ratio improved by 58.7% and 14.9%; the signal-to-noise ratio improved by 36.3% and 11.7%, respectively.

Automated 2D/3D Image Matching Technique with Dual X-ray Images for Estimation of 3D In Vivo Knee Kinematics

  • Kim, Yoon-Hyuk;Phong, Le Dinh;Kim, Kyung-Soo;Kim, Tae-Seong
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.6
    • /
    • pp.431-435
    • /
    • 2008
  • Quantitative information of a three dimensional(3D) kinematics of joint is very useful in knee joint surgery, understanding how knee kinematics related to joint injury, impairment, surgical treatment, and rehabilitation. In this paper, an automated 2D/3D image matching technique was developed to estimate the 3D in vivo knee kinematics using dual X-ray images. First, a 3D geometric model of the knee was reconstructed from CT scan data. The 3D in vivo position and orientation of femoral and tibial components of the knee joint could be estimated by minimizing the pixel by pixel difference between the projection images from the developed 3D model and the given X-ray images. The accuracy of the developed technique was validated by an experiment with a cubic phantom. The present 2D/3D image matching technique for the estimation of in vivo joint kinematics could be useful for pre-operative planning as well as post-operative evaluation of knee surgery.

A Study on the Meaning Function of Symbol Design based on The Comic Dual Forces and The Five Elements (음양오행(陰陽五行) 사상에 의한 심볼디자인의 의미적용 가능성 연구)

  • 장은석;김재희
    • Archives of design research
    • /
    • v.12 no.2
    • /
    • pp.53-62
    • /
    • 1999
  • The modern is image age, and The visually expressed symbols have much influence on individuals or enterprises and have an effect on the variety of individual and the innovation of management. Espacially, the symbols carry on the axis composing total image. According to the reason of positive & negative five elements, this paper analysised and studied the meaning of symbol design which analysis the thoughtful, abstract and formal meaning. This is the most fundmental elements and principals and means the good symbol composed harmoniously the positive & negative five elements give good image. Namely, the symbols of the Eum & Yan which applied the philosophical reason of the Orient thought became good image. The lively elements of design composed the reason of Eum & Yang have effect on auspicious and upgrade one step to the dimension of symbol design. The purpose of this paper analysises and understands the meaning of symbol was composed the positive & negative five elements. In the point of view of modern design. the overlOOking elements of the symbol(line, form, space etc) reminded and established the new model which the new idea approached by the thought of the positive & negative five elements.

  • PDF

A Study Investigating the Relationships between Selfie Practices on Social Media, Muscularity and Body Fat Dissatisfaction among Young Korean Men (남성의 소셜 미디어 셀피 활동과 근육 및 신체 지방 불만족에 관한 연구)

  • Lee, Minsun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.3
    • /
    • pp.510-524
    • /
    • 2021
  • Selfie practices on social media can result in negative body image for men. The current study investigated the dual body image pathway model for the relationship between selfie practices on social media and body satisfaction, with internalization as a mediator. Structural equation modeling analyses supported our research model when studying 446 young Korean male Instagram users. The results indicated that selfie editing behavior, but not selfie browsing behavior, significantly predicted an increased internalization of a body ideal. The positive associations between internalization, muscularity dissatisfaction, and body fat dissatisfaction were confirmed. Additionally, the indirect effects of selfie editing behavior on muscularity and body fat dissatisfaction due to internalization were significant. The study confirmed the detrimental effects of selfie behavior on body satisfaction for male social media users. The results provided valuable information that selfie editing may be a risky behavior since it can result in developing muscularity and body fat dissatisfaction. Theoretical contributions and practical implications were discussed. Future research should address the age and cultural differences that may elucidate the impacts of selfie practices on men's body image concerns.

3D Inspection by Registration of CT and Dual X-ray Images

  • Kim, Youngjun;Kim, Wontae;Lee, Deukhee
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2016
  • Computed tomography (CT) can completely digitize the interior and the exterior of nearly any object without any destruction. Generally, the resolution for industrial CT is below a few microns. The industrial CT scanning, however, has a limitation because it requires long measuring and processing time. Whereas, 2D X-ray imaging is fast. In this paper, we propose a novel concept of 3D non-destructive inspection technique using the advantages of both micro-CT and dual X-ray images. After registering the master object’s CT data and the sample objects’ dual X-ray images, 3D non-destructive inspection is possible by analyzing the matching results. Calculation for the registration is accelerated by parallel computing using graphics processing unit (GPU).

Development of Dual Energy Radiation Detector (이중 에너지 방사선 검출기 개발)

  • Yeo, Hwa-Yeon
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.3
    • /
    • pp.5-11
    • /
    • 2010
  • In this paper, we are suggested development of dual-mode detector for dual-energy digital radiography. Design of dual-energy radiography module for commercial BIS (Baggage Inspection System) is used in the spectrum of the X-ray generator and detector for dual-mode features and radiological characteristics were analyzed. BIS suggestl on the image detector module being used to target X-ray tube to simulate X-ray spectrum and simulated spectrum to offer through the new radiographic characteristics of the detector modules were investigated. Using X-ray experiments with an increase in the thickness of the copper filter low energy detector (LED) and high-energy detector (HED) as the difference between the output signal increases. HED, especially in the size of the output signal decreases with increasing thickness of the copper filter was found.

Preparation and Optical Characterization of DBR/Host Dual Porous Silicon Containing DBR and Host Structures (DBR 다공성 실리콘과 Host 다공성 실리콘으로 이루어진 이중 다공성 실리콘의 제조와 광학적 특성)

  • Choi, Tae-Eun;Yang, Jinseok;Um, Sungyong;Jin, Sunghoon;Cho, Bomin;Cho, Sungdong;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.78-83
    • /
    • 2010
  • DBR/Host dual porous silicons containing DBR and host structure were prepared and their optical properties were characterized using Ocean Optics spectrometer. In this dual porous silicon, single porous silicon layer was used as host layer for possible biomolecule and drug materials and DBR porous silicon layer was used for signal transduction due to the recognition of molecules. Optical reflection spectrum of dual porous silicon displayed only DBR reflection but Fabry-Perot fringe pattern. DBR reflection band of dual porous silicon shifted to the shorter wavelength as the etching time of host layer increased. Cross-sectional FE-SEM image of dual porous silicon displayed a thickness of about 20 micrometer for DBR porous silicon layer. Developed etching technology could be useful to prepare DBR porous silicon which exhibited specific reflection resonance at the required wavelength and to provide an label-free biosensors and drug delivery materials.

A Simulation Study on Image Quality of Virtual Monochromatic Image using Dual-energy Method (이중에너지 방법을 이용한 가상 단색 영상의 화질 시뮬레이션 연구)

  • Son, Ki-Hong;Lee, Soo-Yeul;Kim, Dae-Hong;Chung, Myung-Ae
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.553-558
    • /
    • 2022
  • The purpose of this work was a simulation study to evaluate the virtual monochromatic (VM) image quality of blood vessels compared to the monochromatic image. Dual-energy images were obtained based on the linear attenuation coefficients of five materials at 50 keV and 80 keV at low- and high-energies, respectively. A weighting factor is required to synthesize the VM image, and the liver and bone were used as basis materials to obtain the weighting factor. VM images were synthesized at energies ranging from 30 keV to 100 keV. Image quality was evaluated by Contrast to noise ratio (CNR) and noise by setting calcium and contrast medium as signals and blood as background. According to the results, the energies with the maximum CNR were 50 keV and 60 keV for calcium and contrast medium, respectively. The energies showing the minimum noise were 70 keV, 70 keV, and 60 keV in calcium, iodine contrast medium, and blood, respectively. The VM image can contribute to the improvement of diagnostic performance in CT examination because it can implement an image at the optimal energy that minimize noise and maximize CNR.

An Efficient Quadratic Projection-Based Iris Recognition: Performance Improvements of Iris Recognition Using Dual QML (효율적인 Quadratic Projection 기반 홍채 인식: Dual QML을 적용한 홍채 인식의 성능 개선 방안)

  • Kwon, Taeyean;Noh, Geontae;Jeong, Ik Rae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.1
    • /
    • pp.85-93
    • /
    • 2018
  • Biometric user authentications, day after day, propagate more to human life instead of traditional systems which use passwords and ID cards. However, most of these systems have many problems for given biometric information such noisy data, low-quality data, a limitation of recognition rate, and so on. To deal with these problems, I used Dual QML which is non-linear classification for classifying correctly the real-world data and then proposed preprocessing method for increasing recognition rate and performance by segmenting a specific region on an image. The previous published Dual QML used face, palmprint, ear for the experiment. In this paper, I used iris for experiment and then proved excellence of Dual QML at iris recognition. Finally I demonstrated these results (e.g. increasing recognition rate and performance, suitability for iris recognition) through experiments.

Effects of Swirl Intensity and Particle Size on Dual Swirl Pulverized Coal Flames (미분탄 이중 스월화염에서 스월강도 및 석탄 입경 변화 영향 연구)

  • Choi, Minsung;Sung, Yonmo;Lee, Sangmin;Moon, Cheoreon;Choi, Gyungmin;Kim, Duckjool
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.1-4
    • /
    • 2014
  • The present work focuses on the analysis of the pulverized coal combustion aerodynamics of the dual swirl burner by the control of the swirl-modes such as the outer swirl intensity (OSI). The detailed structure of pulverized coal swirling flames with swirl-mode was studied experimentally by particle image velocimetry and local flame colors based on $OH^*$, $CH^*$, and ${C_2}^*$ radicals. For all co-swirling conditions, the internal recirculation zone (IRZ) was observed near the inner shear layer with respect to the processing vortex core structure. Furthermore, a co-rotating vortex in the outer shear layer and the exhaust tube vortex (ETV) along the central axis were observed. The intensity of $CH^*$ signal was higher with small coal particle size, conversely, the size of the distribution of the $CH^*$ signal becomes larger. Therefore, the control of the aerodynamics with changing swirl intensities may play an important role in improving both environmental and combustion performances.

  • PDF