• Title/Summary/Keyword: Dual-hop relaying system

Search Result 17, Processing Time 0.026 seconds

Outage Performance of Selective Dual-Hop MIMO Relaying with OSTBC and Transmit Antenna Selection in Rayleigh Fading Channels

  • Lee, In-Ho;Choi, Hyun-Ho;Lee, Howon
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1071-1088
    • /
    • 2017
  • For dual-hop multiple-input multiple-output (MIMO) decode-and-forward relaying systems, we propose a selective relaying scheme that uses orthogonal space-time block code (OSTBC) and transmit antenna selection with maximal-ratio combining (TAS/MRC) or vice versa at the first and second hops, respectively. The aim is to achieve an asymptotically identical performance to the dual-hop relaying system with only TAS/MRC, while requiring lower feedback overhead. In particular, we give the selection criteria based on the antenna configurations and the average channel powers for the first and second hops, assuming Rayleigh fading channels. Also, the numerical results are shown for the outage performance comparison between the dual-hop DF relaying systems with the proposed scheme, only TAS/MRC, and only OSTBC.

Throughput-efficient Online Relay Selection for Dual-hop Cooperative Networks

  • Lin, Yuan;Li, Bowen;Yin, Hao;He, Yuanzhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2095-2110
    • /
    • 2015
  • This paper presents a design for a throughput-efficient online relay selection scheme for dual-hop multi-relay cooperative networks. Problems arise with these networks due to unpredictability of the relaying link quality and high time-consumption to probe the dual-hop link. In this paper, we firstly propose a novel probing and relaying protocol, which greatly reduces the overhead of the dual-hop link estimation by leveraging the wireless broadcasting nature of the network. We then formulate an opportunistic relay selection process for the online decision-making, which uses a tradeoff between obtaining more link information to establish better cooperative relaying and minimizing the time cost for dual-hop link estimation to achieve higher throughput. Dynamic programming is used to construct the throughput-optimal control policy for a typically heterogeneous Rayleigh fading environment, and determines which relay to probe and when to transmit the data. Additionally, we extend the main results to mixed Rayleigh/Rician link scenarios, i.e., where one side of the relaying link experiences Rayleigh fading while the other has Rician distribution. Numerical results validate the effectiveness and superiority of our proposed relaying scheme, e.g., it achieves at least 107% throughput gain compared with the state of the art solution.

Capacity Enhancement of the Single Cell System through the Dual-hop Relay (단일 셀 기반 이중 도약 중계 시스템의 성능 향상을 위한 중계기 영역 연구)

  • Kim, Jae-Hwan;Kim, Hyoung-Jong;Song, Hyeong-Jun;Gwon, Tae-Hun;O, Eun-Seong;Hong, Dae-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.151-152
    • /
    • 2006
  • Multi-hop system has advantage of low power consumption, improved cell capacity, and enlarged service coverage. Most of previous researches show that multi-hop relaying beyond dual-hop relaying does not improve system performance significantly. This leads most researches are focused on dual-hop relaying system. In this paper, we propose an optimal boundary condition to support maximal data rate for fluctuation of traffic load in single cell dual-hop relay system.

  • PDF

Outage Performance of Partial Relay Selection in Dual-Hop Decode-and-Forward Relaying Systems (듀얼 홉 디코딩 후 전달 중계 시스템에서 부분 중계 노드 선택 기법의 아웃티지 성능 연구)

  • Lee, In-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.3
    • /
    • pp.40-47
    • /
    • 2012
  • In dual-hop relaying systems, the conventional partial relay selection is based on the channel information only for the first hop. On the other hand, the efficient partial relay selection is based on the channel information for the hop with the minimum of the average channel powers for the first and second hops at each end-to-end link since the correlation coefficient between the end-to-end link quality and the link quality of the hop with the minimum of the average channel powers for the first and second hops is larger than that between the end-to-end link quality and the link quality of the other hop. In this paper, the outage probability of the conventional partial relay selection and the efficient partial relay selection in dual-hop decode-and-forward relaying systems is analyzed for non-identically distributed Rayleigh fading channels. Through numerical investigation, the outage performance of the efficient partial relay selection is compared with the outage performances of the conventional partial relay selection and the best relay selection based on all the channel information for the first and second hops.

Outage Performance Study of Selective MIMO Transmission in Wireless Relaying Systems (무선 중계 시스템에서 선택적 MIMO 전송에 대한 아웃티지 성능 연구)

  • Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2259-2264
    • /
    • 2013
  • In this paper, a selective multiple-input multiple-output(MIMO) transmission scheme is proposed in dual-hop MIMO relaying systems, in which orthogonal space-time block code(OSTBC) transmission and transmit antenna selection(TxAS) transmission are selectively used. Assuming independent Rayleigh fading channels, the outage probability is analyzed for a decode-and-forward(DF) relaying system using the selective MIMO transmission scheme. Also, through numerical investigation, the outage performance for the DF relaying system using the selective MIMO transmission scheme is compared with that for the conventional DF relaying system using OSTBC or TxAS. Moreover, from the performance comparison, it is shown that the proposed scheme can reduce the system overhead without outage performance degradation.

Exploiting Optimal Throughput of Adaptive Relaying Based Wireless Powered Systems under Impacts of Co-channel Interference

  • Nguyen, Thanh-Luan;Do, Dinh-Thuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2009-2028
    • /
    • 2018
  • Considering a dual-hop energy-harvesting (EH) relaying system, this paper advocates novel relaying protocols based on adaptive time power switching-based relaying (AR) architecture for amplify-and-forward (AF) mode. We introduce novel system model relaying network with impacts of co-channel interference (CCI) and derive analytical expressions for the average harvested energy, outage probability, and the optimal throughput of the information transmission link, taking into account the effect of CCI from neighbor cellular users. In particular, we consider such neighbor users procedure CCI both on the relay and destination nodes. Theoretical results show that, in comparison with the conventional solutions, the proposed model can achieve optimal throughput efficiency for sufficiently small threshold SNR with condition of reasonable controlling time switching fractions and power splitting fractions in concerned AR protocol. We also explore impacts of transmission distances in each hop, transmission rate, the other key parameters of AR to throughput performance for different channel models. Simulation results are presented to corroborate the proposed methodology.

Exact Bit Error Rate Analysis of Partial Relay Selection in Dual-Hop Decode-and-Forward Relaying Systems over Rayleigh Fading Channels (레일레이 페이딩 채널을 고려한 듀얼 홉 디코딩 후 전달 중계 시스템에서 부분 중계 노드 선택 기법의 정확한 비트 오차율 분석)

  • Lee, Sangjun;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.42-49
    • /
    • 2014
  • The conventional best relay selection based on all the channel information for the first and second hops in dual-hop systems has a large consumption of resources for channel feedback. In this paper, we analyze the average bit error rate for partial relay selection based on the channel information only for the first hop in dual-hop decode-and-forward relaying systems, where we assume independent Rayleigh fading channels. In particular, we provide an exact and closed-form expression for the average bit error rate of M-ary QAM. Also, through numerical investigation, the performance of the partial relay selection is compared with the performance of the best relay selection, and the performance is evaluated for different numbers of relays and various average channel power ratios for the first and second hops.

Impact of Outdated CSI on the Performance of Incremental Amplify-and-Forward Opportunistic Relaying

  • Zhou, Tsingsong;Gao, Qiang;Fei, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2567-2582
    • /
    • 2016
  • This paper investigates the impact of outdated channel state information (CSI) on the performance of the incremental amplify-and-forward (AF) opportunistic relaying (OR) over dual-hop Rayleigh fading channels. According to the definition of distribution function, we obtain the cumulative distribution function (CDF) of the actual combined signal-to-noise ratio (SNR) received at the destination. Based on this CDF, the closed-form expressions of the average spectral efficiency and outage probability are derived for the incremental AF OR under outdated CSI. Numerical results show that in the low region of the average SNR of the direct link, outdated CSI deteriorates the system performance, whereas in the high region, outdated CSI has almost no impact on the system performance.

Performance Analysis of an AF Dual-hop FSO Communication System with RF Backup Link

  • Alhamawi, Khaled A.;Altubaishi, Essam S.
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.311-319
    • /
    • 2019
  • A hybrid free-space-optical/radio-frequency (FSO/RF) communication system is considered, with the help of amplify-and-forward (AF) relaying. We consider various weather conditions to investigate their effects on the system's performance. We begin by obtaining the cumulative distribution function and probability density function of the end-to-end signal-to-noise ratio for the AF dual-hop FSO communication system with RF backup link. Then, these results are used to derive closed-form expressions for the outage probability, average bit-error rate, and average ergodic capacity. The results show that the considered system efficiently employs the complementary nature of FSO and RF links, resulting in impressive performance improvements compared to non-hybrid systems.

Decode-and-Forward Relaying Systems with Nth Best-Relay Selection over Rayleigh Fading Channels

  • Duy, Tran Trung;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.8-12
    • /
    • 2012
  • In this paper, we evaluate performances of dual-hop decode-and-forward relaying systems with the $N^{th}$ best-relay selection scheme. In some schemes, such as scheduling or load balancing schemes, the best relay is unavailable and hence the system must resort the second best, third best, or generally the $N^{th}$ best relay. We derive the expressions of the outage probability and symbol error rate (SER) for this scenario over Rayleigh fading channels. Monte-Carlo simulations are presented to verify the analytical results.