• Title/Summary/Keyword: Dual-frequency

Search Result 1,208, Processing Time 0.034 seconds

Iterative Detection and ICI Cancellation for MISO-mode DVB-T2 System with Dual Carrier Frequency Offsets

  • Jeon, Eun-Sung;Seo, Jeong-Wook;Yang, Jang-Hoon;Paik, Jong-Ho;Kim, Dong-Ku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.702-721
    • /
    • 2012
  • In the DVB-T2 system with a multiple-input single-output (MISO) transmission mode, Alamouti coded orthogonal frequency division multiplexing (OFDM) signals are transmitted simultaneously from two spatially separated transmitters in a single frequency network (SFN). In such systems, each transmit-receive link may have a distinct carrier frequency offset (CFO) due to the Doppler shift and/or frequency mismatch between the local oscillators. Thus, the received signal experiences dual CFOs. This not only causes dual phase errors in desired data but also introduces inter-carrier interference (ICI), which cannot be removed completely by simply performing a CFO compensation. To overcome this problem, this paper proposes an iterative detection with dual phase errors compensation technique. In addition, we propose a successive-iterative ICI cancellation technique. This technique successively eliminates ICI in the initial iteration by exploiting pre-detected data pairs. Then, in subsequent iterations, it performs a fine interference cancellation using a priori information, iteratively fed back from the channel decoder. In contrast to previous works, the proposed techniques do not require estimates of dual CFOs. Their performances are evaluated via a full DVB-T2 simulator. Simulation results show that the DVB-T2 receiver equipped with the proposed dual phase errors compensation and the successive-iterative ICI cancellation techniques achieves almost the same performance as ideal dual CFOs-free systems, even for large dual CFOs.

Design of Dual-Band WLAN Transmitter with Frequency Doubler (주파수 체배기를 이용한 이중대역 무선 송신부 설계)

  • Roh, Hee-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.116-126
    • /
    • 2008
  • This paper describes the Dual-band WLAN transmitter with 2.4[GHz], 5[GHz]. Dual-band WLAN transmitter was designed at 2.4[GHz] and 5[GHz]. The Dual-band WLAN transmitter has a amplifier which operate at 2.4[GHz] and 5[GHz] frequency and two VCO(Voltage Controlled Oscillator) or VCO has a wide scope of frequency. these problem cause a size and a power consumption, The Dual-band WLAN transmitter module was proposed to solve these. the transmitter was designed to get output signals of IEEE 802.11a's 5.8[GHz] band signal using frequency multiplication way or to act a amplifier about the 2.4[GHz] band signal of IEEE 802.11b/g, according to inputed frequency and bias voltage that a eve using single transmission block. The output spectrum get the improved specification of ACPR of 4[dB], 6[dB], 16[dB] at +11[MHz], +20[MHz], +30[MHz] offset of center frequency compared to no linearization, was satisfied to transmit spectrum mask of IEEE 802.11a wireless Lan.

Dual Frequency Switchable Flexoelectric Cholesteric Devices

  • Chien, Liang-Chy;Shi, Lei
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.105-108
    • /
    • 2005
  • We demonstrate an electro-optical device based on the flexoelectric effect of a short-pitched cholesteric liquid crystal. By using a dual-frequency switchable nematic, a small amount of chiral dopant and a small amount of phase-separated polymer localized on the surface, we were able to create a device that operates in amplitude (flexoelectric) and phase(dielectric) modes. At high frequency the dual frequency liquid crystal suppresses the phase mode at higher voltage, which improves the switching speed, and thereby preserving the in-plane-switching mode.

  • PDF

A Dual-Mode Canonical Filter with Dual-Passband for Satellite Transponder (두 개의 통과대역을 갖는 위성 중계기용 이중모드 정규(Canonical) 구조 필터)

  • 이주섭;엄만석;염인복;박종흥
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.3
    • /
    • pp.278-283
    • /
    • 2004
  • Due to the complex arrangement of frequency plans and spatial overages in modern satellite communications, channels that are non-contiguous in frequency may be amplified by a single power amplifier and transmitted to the ground through one beam. In this paper, a dual-mode canonical filter with dual-passband is presented. The filter adopts dual-mode technique for mass and volume reduction. Canonical structure is adopted for maximum transmission zero realization. To validate the design technique, a 6-pole dual-mode canonical dual-passband filter for Ka-band(30/20 ㎓) satellite transponder is realized. The measured frequency response of the filter shows good agreement with the computed one.

New Configuration of a PLDRO with an Interconnected Dual PLL Structure for K-Band Application

  • Jeon, Yuseok;Bang, Sungil
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.138-146
    • /
    • 2017
  • A phase-locked dielectric resonator oscillator (PLDRO) is an essential component of millimeter-wave communication, in which phase noise is critical for satisfactory performance. The general structure of a PLDRO typically includes a dual loop of digital phase-locked loop (PLL) and analog PLL. A dual-loop PLDRO structure is generally used. The digital PLL generates an internal voltage controlled crystal oscillator (VCXO) frequency locked to an external reference frequency, and the analog PLL loop generates a DRO frequency locked to an internal VCXO frequency. A dual loop is used to ease the phase-locked frequency by using an internal VCXO. However, some of the output frequencies in each PLL structure worsen the phase noise because of the N divider ratio increase in the digital phase-locked loop integrated circuit. This study examines the design aspects of an interconnected PLL structure. In the proposed structure, the voltage tuning; which uses a varactor diode for the phase tracking of VCXO to match with the external reference) port of the VCXO in the digital PLL is controlled by one output port of the frequency divider in the analog PLL. We compare the proposed scheme with a typical PLDRO in terms of phase noise to show that the proposed structure has no performance degradation.

Differential Dual-Frequency Antenna for Wireless Communication

  • Han, Liping;Zhang, Wenmei;Han, Guorui;Ma, Runbo;Li, Li
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.877-879
    • /
    • 2008
  • A novel differential dual-frequency antenna using proximity coupling is proposed. Dual bands are realized by a slot in the ground plane. The lower resonant frequency is controlled by the slot in the ground plane, and the upper resonant frequency is mainly determined by the dimensions of the radiating patch. Measured results show that the proposed antenna can operate at 2.51 GHz and 5.38 GHz.

  • PDF

Combustion Instability Comprehension with Combustion Chamber Length in Dual Swirl Gas Turbine Model Combustor from Flame Behaviors (화염거동을 통한 이중선회 가스터빈 모델 연소기에서 연소실 길이에 따른 연소 불안정성 이해)

  • Jang, Munseok;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.233-235
    • /
    • 2015
  • This study is to investigate the combustion instability of the variation of combustion chamber length in dual swirl gas turbine model combustor. When equivalence ratio was fixed at 1.1, as the length of the combustion chamber increases the value of the frequency decreased in 7kW while the value of the frequency was constant in 4kW. The analysis of flame behaviors by high speed camera was conducted to identify such trend.

  • PDF

Design of Dual Band Microstrip H-shaped Patch Antenna using Shorting Pin (단락핀을 이용한 이중대역 마이크로스트립 H형 패치 안테나 설계)

  • Chang, Se-Wook;Ko, Jae-Hyeong;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1835-1840
    • /
    • 2008
  • In this paper, a dual band H-shaped microstrip patch antenna is designed for RFID application. Using shorting pin and H shaped for dual resonators and control dual frequency independently. The antenna shows a good performance at the frequency, 912MHz and 2.45GHz for the radiation characteristic and input impedance matching, as well. The reflection is lower than -10dB and a good directivity higher than 3dB is achieved for both frequency.

Design of Miniaturized Dual-Band Artificial Magnetic Conductor with Easy Control of Second/First Resonant Frequency Ratio

  • Ta, Son Xuat;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.2
    • /
    • pp.104-112
    • /
    • 2013
  • A novel miniaturized artificial magnetic conductor (AMC) is proposed for dual-band operation. An AMC unit cell that employs four slots in the metallic patch is used to achieve miniaturization as well as easy control of the second/first resonant frequency ratio, which can be varied from 1.5 to 3.26 by simply changing the slot shape for a given metallic patch size. A dual-band antenna composed of a wideband monopole suspended over the proposed AMC surface is designed and tested to validate this approach. The measurements result in a satisfactory and good matching condition for the dual-band antenna.

Improved Impedance Matching of Dual-Frequency Microstrip Printed-Dipole Antenna with Conductor Back

  • Tangjitjesada, M.;Anantrasirichai, N.;Wakabayashi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1668-1671
    • /
    • 2003
  • A novel dual-frequency microstrip printed-dipole antenna operating at 5 GHz and 10 GHz is presented. This antenna is designed for wireless and mobile communication. The balance step coplanar strip is used to be a transmission line at the center of dipole with matching impedance at 50 ohm. Using the conductor strip align on the other side of antenna and adjust the width of step coplanar strip line to improved input impedance matching. By modification for matching impedance of dual frequency antenna are not affected to the radiation patterns. The Finite Difference Time Domain (FDTD) technique is applying to analyze the basic characteristic properties such as $S_{11}$ , input impedance , VSWR and radiation patterns. And these parameters are discussed. The analyze problem space are $51{\times}197{\times}175$ cells and cell dimension are ${\Delta}x=0.3\;mm$ and ${\Delta}y={\Delta}z=0.15\;mm$.

  • PDF