• Title/Summary/Keyword: Dual-Salt

Search Result 36, Processing Time 0.03 seconds

Development of Steady State Isotope Concentration Analysis Code for Molten Salt Reactor Using Variable Reprocess Time Constant (가변 재처리 시간상수를 고려한 용융염핵연료 원자로 평형핵종농도분석 코드 개발)

  • 원성희;조재국;임현진;김태규;윤정선;오세기
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.107-112
    • /
    • 1999
  • AMBIDEXTER(Advanced Molten-salt Break-even Inherently-safe Dual-mission Experimental & Test Reactor) 핵연료계통은 Th/$^{233U}$ 불화용융염으로 구성되어 있으며, 핵분열생성물질의 운전중 연속재처리가 가능하여 운전상태에 따라 원자로내 연료물질의 농도분포를 정확하게 계산하는 것은 원자로 설계에 있어 주요 기술이다.(중략)

  • PDF

Post Process Associated with the Electrochemical Reduction Process - Smelting of a Metal Product and Solidification of a Molten Salt (전해환원공정 관련 후처리공정 - 금속전환체 Smelting 및 용융염 고화)

  • 허진목;정명수;이원경;조수행;서중석;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.278-284
    • /
    • 2004
  • The processes for the smelting of a metal product and the solidification of a molten salt were developed respectively to treat the products from the electrochemical reduction process. The method for the separation of a metal product in a magnesia container from the residual. salt and consequent smelting of it to a metal ingot by the multi step heating in vacuum was proposed. The new concept using a dual vessel and a salt valve was also suggested for the solidification of a molten salt into a regular size and shape which is suitable for the transport and measurement. The results obtained in the study will be applied to the design of the hot cell demonstration system of the Advanced Spent Fuel Conditioning Process of KAERI.

  • PDF

PROPOSAL FOR DUAL PRESSURIZED LIGHT WATER REACTOR UNIT PRODUCING 2000 MWE

  • Kang, Kyoung-Min;Noh, Sang-Woo;Suh, Kune-Yull
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1005-1014
    • /
    • 2009
  • The Dual Unit Optimizer 2000 MWe (DUO2000) is put forward as a new design concept for large power nuclear plants to cope with economic and safety challenges facing the $21^{st}$ century green and sustainable energy industry. DUO2000 is home to two nuclear steam supply systems (NSSSs) of the Optimized Power Reactor 1000 MWe (OPR1000)-like pressurized water reactor (PWR) in single containment so as to double the capacity of the plant. The idea behind DUO may as well be extended to combining any number of NSSSs of PWRs or pressurized heavy water reactors (PHWRs), or even boiling water reactors (BWRs). Once proven in water reactors, the technology may even be expanded to gas cooled, liquid metal cooled, and molten salt cooled reactors. With its in-vessel retention external reactor vessel cooling (IVR-ERVC) as severe accident management strategy, DUO can not only put the single most querulous PWR safety issue to an end, but also pave the way to very promising large power capacity while dispensing with the huge redesigning cost for Generation III+ nuclear systems. Five prototypes are presented for the DUO2000, and their respective advantages and drawbacks are considered. The strengths include, but are not necessarily limited to, reducing the cost of construction by decreasing the number of containment buildings from two to one, minimizing the cost of NSSS and control systems by sharing between the dual units, and lessening the maintenance cost by uniting the NSSS, just to name the few. The latent threats are discussed as well.

A Study an Optimal Design of the On-line Chemical Process System for the AMBIDEXTER Operating with the molten Th-U-Pu salt mixture Fuel (Th-U-Pu 혼합 용융염핵연료 AMBIDEXTER 원자로 시스템의 온라인 핵연료 용량 최적화 설계에 관한 연구)

  • 이영준;김진성;유영진;오세기
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.81-87
    • /
    • 2002
  • 원자로계통 전체가 원자로 용기안에 일체형으로 내장되었으며 열ㆍ에너지 수송회로와 물질ㆍ방사선 수송회로가 각각 분리, 혼합된 복합 원자력에너지시스템인 250MW$_{th}$ 실증로급 AMBIDEXTER (Advanced Molten-salt Break-even Inherently-safe Dual-missioning Experimental and TEst Reactor)는 부의 핵연료 반응도로 인한 고유안전성과 핵확산 방지, 폐기물 감축, 핵연료 경제성 및 자원 이용의 효율성을 갖춘 원자로로서 현재 아주대학교에 서 개념 설계중이다.(중략)

  • PDF

Evaluation of Some Self-Regulation Characteristics of the AMBIDEXTER Nuclear Energy Complex (AMBIDEXTER 원자력 복합 에너지시스템의 출력 자동조절 특성 평가 연구)

  • 김진성;이영준;유영진;오세기
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.05a
    • /
    • pp.9-20
    • /
    • 2002
  • 기존의 원자력 발전기술이 안고 있는 대부분의 고유한 문제점인 핵안전성, 핵확산방지 및 핵폐기물 관리 문제는 물론 더 나아가 국내의 핵원료자원의 공급안정과 원자력에 대한 국민적 신뢰성 회복을 비롯하여 원자력의 평화적 이용확대를 위해 필수적으로 고려해야할 사항들을 반영한 새로운 개념의 250 MW$_{th}$ 실증로급 AMBIDEXTER(Advanced Molten-salt Break-even Inherently-safe Dual-missioning EXperimetal and TEst Reactor) 원자력 에너지 시스템을 현재 개념 설계 중에 있다.(중략)

  • PDF

Some Static Design Characteristics of the Optimized ${250MW_th}$ AMBIDEXTER Core (${250MW_th}$ AMBIDEXTER 원자로의 정특성 최적설계)

  • 조재국;원성희;임현진;김태규;윤정선;오세기
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.113-118
    • /
    • 1999
  • AMBIDEXTER(Advanced Molten-salt Break-even Inherently-safe Dual-mission Experimental and TEst Reactor)는 고온저압의 Th/$^{233}$ U 불화용융염을 핵연료로 사용하므로 피복관이나 독립된 냉각재 없이 핵연료 자체가 열수송 매체로서 순환하는 원자로시스템개념으로서 저농축 $^{235}$ U 고체 핵연료를 사용하는 기존의 원자력 발전시스템이 안고있는 핵확산과 안전성 등의 고유문제를 해결할 수 있는 혁신형 차세대 원자력 발전시스템이다.(중략)

  • PDF

AMBIDEBTER Nuclear Complex - A Credible Option for Future Nuclear Energy Applications (AMBIDEXTER 원자력 복합체 - 신뢰성 있는 미래 원자력에너지 이용 방안)

  • 오세기;정근모
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.235-242
    • /
    • 1998
  • Aiming at one of decisive alternatives for long term aspect of nuclear power concerns, an integral and closed nuclear system, AMBIDEXTER (Advanced Molten-salt Break-even Inherently-safe Dual-mission Experimental and TEst Reactor) concept is under development. The AMBIDEXTER complex essentially comprises two mutually independent loops of the radiation/material transport and the heat/energy conversion, centered at the integrated reactor assembly, which enables one to utilize maximum benefits of nuclear energy under minimum risks of nuclear radiation. And it provides precious radioisotopes and radiation sources from its waste stream. Also the reactor operates at very low level of fission products inventory throughout its lifetime. The nuclear and thermalhydraulic characteristics of the molten TH/$^{233}$ U fuel salt extend the capability of the self-sustaining AMBIDEXTER fuel cycle to enhance resource security and safeguard transparency. The reactor system is consisted of a single component module of the core, heat exchangers and recirculation pumps with neither pipe connections nor active valves in between, which will significantly improve inherent features of nuclear safety. States of the core technologies associated with designing and developing the AMBIDEXTER concept are mostly available in commercialized form and thus demonstration of integral aspects of the concept should be the prime area in future R&D programs.

  • PDF

Synthesis of KIT-1 Mesoporous Silicates Showing Two Different Macrosporous Strucrtues; Inverse-opal or Hollow Structures (거대기공 구조-역오팔 또는 중공 구조를 갖는 KIT-1 메조포러스 실리케이트의 제조)

  • Baek, Youn-Kyoung;Lee, Jung-Goo;Kim, Young Kuk
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.189-194
    • /
    • 2016
  • We report a facile method for preparing KIT-1 mesoporous silicates with two different macroporous structures by dual templating. As a template for macropores, polystyrene (PS) beads are assembled into uniform three dimensional arrays by ice templating, i.e., by growing ice crystals during the freezing process of the particle suspension. Then, the polymeric templates are directly introduced into the precursor-gel solution with cationic surfactants for templating the mesopores, which is followed by hydrothermal crystallization and calcination. Later, by burning out the PS beads and the surfactants, KIT-1 mesoporous silicates with macropores are produced in a powder form. The macroporous structures of the silicates can be controlled by changing the amount of EDTANa4 salt under the same templating conditions using the PS beads and inverse-opal or hollow structures can be obtained. This strategy to prepare mesoporous powders with controllable macrostructures is potentially useful for various applications especially those dealing with bulky molecules such as, catalysis, separation, drug carriers and environmental adsorbents.

Dual Coating Improves the Survival of Probiotic Bifidobacterium Strains during Exposure to Simulated Gastro-Intestinal Conditions (위장관내 조건에서 이중코팅 처리 된 프로바이오틱 비피도박테리움의 생존력 향상)

  • Kang, Joo Yeon;Lee, Do Kyung;Park, Jae Eun;Kim, Min Ji;Lee, Joong-Su;Seo, Jae-Gu;Chung, Myung Jun;Shin, Hea Soon;Ha, Nam Joo
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.275-281
    • /
    • 2013
  • Probiotics have been reported to benefit human health by modulating immunity, lowering cholesterol, improving lactose tolerance, and preventing some cancer. Once ingested, probiotic microorganisms have to survive harsh conditions such as low pH, protease-rich condition, and bile salts during their passage through the gastro-intestinal (GI) tract colonize and proliferate to exert their probiotic effects. The dual coating technology, by which the bacteria are doubly coated with peptides and polysaccharides in consecutive order, was developed to protect the ingested bacteria from the harsh conditions. The aim of the study was to evaluate the viable stability of a doubly coated blend of four species of Bifidobacterium by comparing its bile/acid resistance and heat viability in vitro with that of the non-coated blend. After challenges with acid, bile salts, heat, and viable cell counts (VVCs) of the dual coated and non-coated blend were determined by cultivation on agar plates or flow cytometric measurement after being stain with the BacLigtht kit$^{TM}$. The results showed that the dual coated blend was much higher resistant to the acidic or bile salt condition than the non-coated blend and heat viability was also higher, indicating that the dual coating can improve the survival of probiotic bacteria during their transit through the GI tract after consumption.

Investigation of Intertidal Zone using TerraSAR-X (TerraSAR-X를 이용한 조간대 관측)

  • Park, Jeong-Won;Lee, Yoon-Kyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.383-389
    • /
    • 2009
  • The main objective of the research is a feasibility study on the intertidal zone using a X-band radar satellite, TerraSAR-X. The TerraSAR-X data have been acquired in the west coast of Korea where large tidal flats, Ganghwa and Yeongjong tidal flats, are developed. Investigations include: 1) waterline and backscattering characteristics of the high resolution X-band images in tidal flats; 2) polarimetric signature of halophytes (or salt marsh plants), specifically Suaeda japonica; and 3) phase and coherence of interferometric pairs. Waterlines from TerraSAR-X data satisfy the requirement of horizontal accuracy of 60 m that corresponds to 20 cm in average height difference while current other spaceborne SAR systems could not meet the requirement. HH-polarization was the best for extraction of waterline, and its geometric position is reliable due to the short wavelength and accurate orbit control of the TerraSAR-X. A halophyte or salt marsh plant, Suaeda japonica, is an indicator of local sea level change. From X-band ground radar measurements, a dual polarization of VV/VH-pol. is anticipated to be the best for detection of the plant with about 9 dB difference at 35 degree incidence angle. However, TerraSAR-X HH/TV dual polarization was turned to be more effective for salt marsh monitoring. The HH-HV value was the maximum of about 7.9 dB at 31.6 degree incidence angle, which is fairly consistent with the results of X-band ground radar measurement. The boundary of salt marsh is effectively traceable specifically by TerraSAR-X cross-polarization data. While interferometric phase is not coherent within normal tidal flat, areas of salt marsh where the landization is preceded show coherent interferometric phases regardless of seasons or tide conditions. Although TerraSAR-X interferometry may not be effective to directly measure height or changes in tidal flat surface, TanDEM-X or other future X-band SAR tandem missions within one-day interval would be useful for mapping tidal flat topography.