• Title/Summary/Keyword: Dual-Berkovich indentation test

Search Result 2, Processing Time 0.021 seconds

A Berkovich Indentation Technique Based on 3D FEA solutions for Material Property Evaluation (3차원 유한요소해에 기초한 Berkovich 압입 물성평가법)

  • Kim, Min-Soo;Hyun, Hong-Chul;Lee, Kyoung-Yoon;Lee, Hyung-Yil
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1-6
    • /
    • 2008
  • Due to the self-similarity of Berkovich and conical indenters, different materials may show the same loaddepth curve for single indentation. In this study, we first compare the load-depth characteristics of conical and Berkovich indenters via finite element method. We also analyze the variation of load-depth curves with angle of Berkovich indenter, indentation parameters, and material properties. With numerical regressions of obtained data, we then propose dual-Berkovich indentation formulae for material property evaluation. The proposed approach provides the values of elastic modulus, yield strength and strain-hardening exponent and corresponding stress-strain curve with an average error of less than 3%. The method is valid for any elastic indenters made of tungsten carbide and diamond for instance.

  • PDF

A Conical Indentation Technique Based on FEA Solutions for Property Evaluation (유한요소해에 기초한 원뿔형 압입 물성평가법)

  • Hyun, Hong-Chul;Kim, Min-Soo;Lee, Jin-Haeng;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.859-869
    • /
    • 2009
  • The sharp indenters such as Berkovich and conical indenters have a geometrical self-similarity in theory, but different materials have the same load-depth curve in case of single indentation. In this study, we analyze the load-depth curves of conical indenter with angles of indenter via finite element method. From FE analyses of dual-conical indentation test, we investigate the relationships between indentation parameters and load-deflection curves. With numerical regressions of obtained data, we finally propose indentation formulae for material properties evaluation. The proposed approach provides stress-strain curve and the values of elastic modulus, yield strength and strain-hardening exponent with an average error of less than 2%. It is also discussed that the method is valid for any elastically deforming indenters made of tungsten carbide and diamond for instance. The proposed indentation approach provides a substantial enhancement in accuracy compared with the prior methods.