• Title/Summary/Keyword: Dual-Arm Robot

Search Result 80, Processing Time 0.024 seconds

A Study on Visual Feedback Control of a Dual Arm Robot with Eight Joints

  • Lee, Woo-Song;Kim, Hong-Rae;Kim, Young-Tae;Jung, Dong-Yean;Han, Sung-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.610-615
    • /
    • 2005
  • Visual servoing is the fusion of results from many elemental areas including high-speed image processing, kinematics, dynamics, control theory, and real-time computing. It has much in common with research into active vision and structure from motion, but is quite different from the often described use of vision in hierarchical task-level robot control systems. We present a new approach to visual feedback control using image-based visual servoing with the stereo vision in this paper. In order to control the position and orientation of a robot with respect to an object, a new technique is proposed using a binocular stereo vision. The stereo vision enables us to calculate an exact image Jacobian not only at around a desired location but also at the other locations. The suggested technique can guide a robot manipulator to the desired location without giving such priori knowledge as the relative distance to the desired location or the model of an object even if the initial positioning error is large. This paper describes a model of stereo vision and how to generate feedback commands. The performance of the proposed visual servoing system is illustrated by the simulation and experimental results and compared with the case of conventional method for dual-arm robot made in Samsung Electronics Co., Ltd.

  • PDF

Coordination of dual arm robot using 3-D vision sensor

  • Yoshioka, Izuru;Taguchi, Nobuyoshi;Yeol, Beak-Ju;Wang, Honbo;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.400-403
    • /
    • 1995
  • A robot system is proposed to realize coordinated motion of two arm robot. Due to a 3-D vision sensor, precise coordinated motions could be realized. Using a sophisticated IC chip, real time image processing could be executed using a simple circuit.

  • PDF

Self-Organization Fuzzy Control of Dual-Arm Robot (Dual-Arm로봇의 자기구성 퍼지제어)

  • 김홍래;김종수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.201-206
    • /
    • 2003
  • In this paper, it is presented a new technique to the design and real-time implementation of fuzzy control system based-on digital signal processors in order to improve the precision and robustness for system of industrial robot. Fuzzy control has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory, especially in the real of industrial processes. In this thesis, a self-organizing fuzzy controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variable of the controller, In the synthesis of a FLC, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult, SOFC is proposed fir a hierarchical control structure consisting of basic level and high level that modify control rules. The proposed SOFC scheme is simple in structure, fast in computation and suitable for implementation of real-time control. Performance of the SOFC is illustrated by simulation and experimental results for robot with eight joints.

  • PDF

Design and Implementation of Paddle Type End of Arm Tool for Rescue Robot (인명 구조용 로봇의 패들형 말단 장치 설계 및 구현)

  • Kim, Hyeonjung;Lee, Ikho;An, Jinung
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.205-212
    • /
    • 2018
  • This paper deals with the paddle type end of arm tool for rescue robot instead of rescue worker in dangerous environments such as fire, earthquake, national disaster and defense. It is equipped at the dual arm manipulator of the rescue robot to safely lift up an injured person. It consists of the paddle for lifting person, sensors for detecting insertion of person onto the paddle, sensor for measuring the tilting angle of the paddle, and mechanical compliance part for preventing incidental injuries. The electronics is comprised of the DAQ module to acquire the sensors data, the control module to treat the sensors data and to manage the errors, and the communication module to transmit the sensors data. After optimally designing the mechanical and electronical parts, we successfully made the paddle type end of arm tool and evaluated its performance by using specially designed jigs. The developed paddle type end of arm tool is going to be applied to the rescue robot for performance verification through field testing.

Hierarchical Model-based Real-Time Collision-Free Trajectory Control for a Cual Arm Rrobot System (계층적 모델링에 의한 두 팔 로봇의 상호충돌방지 실시간 경로제어)

  • Lee, Ji-Hong;Won, Kyoung-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.461-468
    • /
    • 1997
  • A real-time collision-free trajectory control method for dual arm robot system is proposed. The proposed method is composed of two stages; one is to calculate the minimum distance between two robot arms and the other is to control the trajectories of the robots to ensure collision-free motions. The calculation of minimum distance between two robots is, also, composed of two steps. To reduce the calculation time, we, first, apply a simple modeling technique to the robots arms and determine the interested part of the robot arms. Next, we apply more precise modeling techniques for the part to calculate the minimum distance. Simulation results show that the whole algorithm runs within 0.05 second using Pentium 100MHz PC.

  • PDF