• Title/Summary/Keyword: Dual task performance

Search Result 83, Processing Time 0.027 seconds

A Study on Visual Feedback Control of a Dual Arm Robot with Eight Joints

  • Lee, Woo-Song;Kim, Hong-Rae;Kim, Young-Tae;Jung, Dong-Yean;Han, Sung-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.610-615
    • /
    • 2005
  • Visual servoing is the fusion of results from many elemental areas including high-speed image processing, kinematics, dynamics, control theory, and real-time computing. It has much in common with research into active vision and structure from motion, but is quite different from the often described use of vision in hierarchical task-level robot control systems. We present a new approach to visual feedback control using image-based visual servoing with the stereo vision in this paper. In order to control the position and orientation of a robot with respect to an object, a new technique is proposed using a binocular stereo vision. The stereo vision enables us to calculate an exact image Jacobian not only at around a desired location but also at the other locations. The suggested technique can guide a robot manipulator to the desired location without giving such priori knowledge as the relative distance to the desired location or the model of an object even if the initial positioning error is large. This paper describes a model of stereo vision and how to generate feedback commands. The performance of the proposed visual servoing system is illustrated by the simulation and experimental results and compared with the case of conventional method for dual-arm robot made in Samsung Electronics Co., Ltd.

  • PDF

Dual-Phase Approach to Improve Prediction of Heart Disease in Mobile Environment

  • Lee, Yang Koo;Vu, Thi Hong Nhan;Le, Thanh Ha
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.222-232
    • /
    • 2015
  • In this paper, we propose a dual-phase approach to improve the process of heart disease prediction in a mobile environment. Firstly, only the confident frequent rules are extracted from a patient's clinical information. These are then used to foretell the possibility of the presence of heart disease. However, in some cases, subjects cannot describe exactly what has happened to them or they may have a silent disease - in which case it won't be possible to detect any symptoms at this stage. To address these problems, data records collected over a long period of time of a patient's heart rate variability (HRV) are used to predict whether the patient is suffering from heart disease. By analyzing HRV patterns, doctors can determine whether a patient is suffering from heart disease. The task of collecting HRV patterns is done by an online artificial neural network, which as well as learning knew knowledge, is able to store and preserve all previously learned knowledge. An experiment is conducted to evaluate the performance of the proposed heart disease prediction process under different settings. The results show that the process's performance outperforms existing techniques such as that of the self-organizing map and gas neural growing in terms of classification and diagnostic accuracy, and network structure.

Implementation of Dual-Kernel based Control System and Evaluation of Real-time Control Performance for Intelligent Robots (지능형 로봇을 위한 이중 커널 구조의 제어 시스템 구현 및 실시간 제어 성능 분석)

  • Park, Jeong-Ho;Yi, Soo-Yeong;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1117-1123
    • /
    • 2008
  • This paper implements dual-kernel system using standard Linux and real-time embedded Linux for the real-time control of intelligent robot systems. Such system provides more useful services including standard Linux thread that is easy to implement complicated tasks and real-time tasks for the deterministic response to velocity control. Here, an open source real-time embedded Linux, XENOMAI, is ported on embedded target board. And for interfacing with motor controller we adopted a real-time serial device driver. The real-time task was implemented with a priority to keep the cyclic control command for trajectory control. In order to validate deterministic response of the proposed system, the performance measurement of the delay in performing trajectory control with feedback loop is evaluated with non real-time standard Linux. The proposed software architecture is anticipated to take advantage of features in both standard Linux and real-time operating systems for the intelligent robot systems.

Comparison of Usability and Prefrontal Cortex Activity of Cognitive-Motor Training Programs using Sensor-Based Interactive Systems

  • Jihye Jung;Seungwon Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.571-578
    • /
    • 2022
  • Objective: Cognitive-motor trainings had a positive impact on cognitive function and dual-task trainings led to improvements of global cognitive function. The brain activity of the prefrontal cortex (PFC) is another indicator that can infer cognitive function. This study aims to confirm the usability of the interactive system cognitive-motor training program and the changes in the prefrontal cortex through training. Design: Cross-sectional study Methods: In this study, two cognitive tasks were randomly applied to 20 adults as cognitive-motor training using an interactive system, and the same task was performed using the original method. During all tasks, the brain activity of the prefrontal cortex was measured by the change in oxyhemoglobin (HbO) in real-time using Functional Near-Infrastructure. After performing the tasks, the usability of the developed interactive system was evaluated by a usability questionnaire which consists of five items, and each item consists of a 7-point Likert scale that responds from 1 point to 7 points. Results: The HbO levels were increased during cognitive task performance than at the resting phase. And evaluating the usefulness of the interactive system, a questionnaire result showed that it would be useful for cognitive-motor programs. Conclusions: The cognitive-motor training using the interactive system increased the activity of the prefrontal cortex, and the developed wearable sensor-based interactive system confirmed its usefulness.

Energy-Efficient Resource Allocation for Application Including Dependent Tasks in Mobile Edge Computing

  • Li, Yang;Xu, Gaochao;Ge, Jiaqi;Liu, Peng;Fu, Xiaodong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2422-2443
    • /
    • 2020
  • This paper studies a single-user Mobile Edge Computing (MEC) system where mobile device (MD) includes an application consisting of multiple computation components or tasks with dependencies. MD can offload part of each computation-intensive latency-sensitive task to the AP integrated with MEC server. In order to accomplish the application faultlessly, we calculate out the optimal task offloading strategy in a time-division manner for a predetermined execution order under the constraints of limited computation and communication resources. The problem is formulated as an optimization problem that can minimize the energy consumption of mobile device while satisfying the constraints of computation tasks and mobile device resources. The optimization problem is equivalently transformed into solving a nonlinear equation with a linear inequality constraint by leveraging the Lagrange Multiplier method. And the proposed dual Bi-Section Search algorithm Bi-JOTD can efficiently solve the nonlinear equation. In the outer Bi-Section Search, the proposed algorithm searches for the optimal Lagrangian multiplier variable between the lower and upper boundaries. The inner Bi-Section Search achieves the Lagrangian multiplier vector corresponding to a given variable receiving from the outer layer. Numerical results demonstrate that the proposed algorithm has significant performance improvement than other baselines. The novel scheme not only reduces the difficulty of problem solving, but also obtains less energy consumption and better performance.

A Coordination Control Methodlolgy for Two Cooperating Arms Handling a Single Object (단일물체 조작을 위한 두 협조 로봇의 협조제어)

  • Yeo, Hee-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.190-196
    • /
    • 2000
  • A hybrid position/force control scheme to regulate the force and position by dual arms is proposed where two arms are treated as one rm in a kinematic viewpoint. The force error calculated from the information of two force/torque sensors attached to the end of each arm is transferred to minimum configuration space coordinates and then is distributed to total system joint coordinates, The position adjustment at the total con-figuration coordinates is computed based on the effective compliance matrix with respect to total joint coordinates which is obtained by coordinate transformation between the task coordinates and the total joint coordinates. The proposed scheme is applied to sawing task. When the trajectory of the saw is planned to follow a line in a horizontal plane 2 position parameters are to be controlled(i.e., two translational positions) Also a certain level of contact force has to be controlled along the vertical direction(i.e. minus z-direction) not to loose the contact with the object to be sawn. We experimentally show that the performance of the velocity and force response are satisfactory. The proposed hybrid control scheme can be applied to arbitrary two cooperating arm system regardless of their kinematic structure and the number of actuated joints.

  • PDF

Scheduling Start-up Transient Periods of Dual Armed Cluster Tools (양팔 클러스터장비의 초기 전이 기간 스케줄링)

  • Hong, Kyeung-Hyo;Kim, Ja-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.17-26
    • /
    • 2015
  • A cluster tool used in many kinds of semiconductor processes for improving the performance and the quality of wafers has a simple configuration, but its schedule is not easy because of its parallel processing module, a lack of intermediate buffers, and time constraints. While there have been many studies on its schedule, most of them have focused on full cycles in which identical work cycles are repeated under constant task times. In this research, we suggest strategies of start-up transient scheduling which satisfies time constraints and converges into a desirable steady schedule for full work cycle. The proposed schedules are expected robust under the stationary stochastic task times. Finally, we show that the strategies make schedules enters the desirable steady schedule and robust using the simulation.

A Preliminary Study on a Performance-Based Cognitive Function Test : With the Normal Elderly (수행기반 인지기능평가를 위한 예비연구 : 정상 노인을 대상으로)

  • Kwak, Ho-Soung;Park, Ji-Hyuk
    • Therapeutic Science for Rehabilitation
    • /
    • v.8 no.3
    • /
    • pp.43-55
    • /
    • 2019
  • Objective: The purpose of this study is to conduct a preliminary research for the development of a Performance-Based Cognitive Function Test (PCFT) to screen the elderly for cognitive function impairment, and examine the reliability and validity of the test. Methods: A draft version of the Performance-Based Cognitive Function Test (PCFT) was developed and utilized in nine healthy elderly individuals. In order to verify its reliability, we analyzed the internal consistency of the PCFT. In order to verify the concurrent validity of the PCFT, this study analyzed the correlation between motor-cognitive dual task assessments and the Korean version of the Mini-Mental State Examination (MMSE-K). Results: The internal consistency of the PCFT for motor and cognitive tasks was 0.871 and 0.959 (Cronbach's ${\alpha}$), respectively. Concurrent validity of the PCFT, which was performed through motor-cognitive dual task assessments, ranged from 0.755 to 0.964 (Spearman's rho statistic, p < 0.05). In addition, correlation between the cognitive assessment tool and the MMSE-K ranged from 0.849 to 0.943 (p < 0.01). Conclusion: This study verified, and established the reliability and validity of the PCFT. Further studies are required to examine other psychometric properties in a modified PCFT, for screening cognitive function impairments in the elderly.

Implementation of Fuzzy Self-Tuning PID and Feed-Forward Design for High-Performance Motion Control System

  • Thinh, Ngo Ha Quang;Kim, Won-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.136-144
    • /
    • 2014
  • The existing conventional motion controller does not perform well in the presence of nonlinear properties, uncertain factors, and servo lag phenomena of industrial actuators. Hence, a feasible and effective fuzzy self-tuning proportional integral derivative (PID) and feed-forward control scheme is introduced to overcome these problems. In this design, a fuzzy tuner is used to tune the PID parameters resulting in the rejection of the disturbance, which achieves better performance. Then, both velocity and acceleration feed-forward units are added to considerably reduce the tracking error due to servo lag. To verify the capability and effectiveness of the proposed control scheme, the hardware configuration includes digital signal processing (DSP) which plays the main role, dual-port RAM (DPRAM) to guarantee rapid and reliable communication with the host, field-programmable gate array (FPGA) to handle the task of the address decoder and receive the feed-back encoder signal, and several peripheral logic circuits. The results from the experiments show that the proposed motion controller has a smooth profile, with high tracking precision and real-time performance, which are applicable in various manufacturing fields.

Model-based sliding mode tracking control of 6-6 Stewart platform manipulator

  • Lee, Chong-Won;Kim, Nag-In
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.772-775
    • /
    • 1997
  • A high speed tracking control for 6-6 Stewart platform manipulator is performed by employing the joint-axis sliding mode control based on dynamics. Because of the complex dynamics and kinematics of Stewart platform manipulator, two computer systems, consisting of a PC and a DSP, are adopted, so that real time tasks are run in synchronous and asynchronous modes. It is experimentally proven that the proposed control system leads to an easy to implement and effective control task, and it can achieve the high performance tracking control under the high speed and severe payload condition.

  • PDF