• Title/Summary/Keyword: Dual substituent effect

Search Result 5, Processing Time 0.014 seconds

Correlation of Chemical Shifts with Substituent Parameters in N-Benzyl Derivatives of Pyrrole,3a,7a-Dihydroindole,and Indole Esters

  • Jeon, Kyu-Ok;Yu, Sook-Yu;Lee, Chang-Kiu
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.9
    • /
    • pp.1241-1255
    • /
    • 2002
  • Series of m- and p-substituted benzyl derivatives of pyrrole, tetramethyl 1-benzyl-3a,7a-dihydroindole-2,3,3a,4-tetracarboxylate, and trimethyl 1-benzylindole-2,3,4-tricarboxylate were prepared and their 13C NMR spectra were obtained in 0.1 M solutions of chloroform-d. Both single substituent parameter and dual substituent parameter analyses were carried out to correlate the substituent chemical shifts. The ${\beta}$ carbon of the indole series showed the most profound substituent effect dependence as well as the best correlation. The results are explained by the hyperconjugation of the benzyl methylene group.

Dual Substituent Effects on Anilinolysis of Bis(aryl) Chlorothiophosphates

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3597-3601
    • /
    • 2013
  • The reactions of bis(Y-aryl) chlorothiophosphates (1) with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at $55.0^{\circ}C$. The Hammett plots for substituent Y variations in the substrates show biphasic concave upwards with a break point at Y = H. The cross-interaction constants (${\rho}_{XY}$) are positive for both electron-donating and electron-withdrawing Y substituents. The kinetic results of 1 are compared with those of Y-aryl phenyl chlorothiophosphates (2). The cross-interaction between Y and Y, due to additional substituent Y, is significant enough to result in the change of the sign of ${\rho}_{XY}$ from negative with 2 to positive with 1. The effect of the cross-interaction between Y and Y on the rate changes from negative role with electron-donating Y substituents to positive role with electron-withdrawing Y substituents, resulting in biphasic concave upward free energy correlation with Y. A stepwise mechanism with a rate-limiting leaving group departure from the intermediate involving a predominant frontside attack hydrogen bonded, four-center-type transition state is proposed based on the positive sign of ${\rho}_{XY}$ and primary normal deuterium kinetic isotope effects.

Kinetic and Theoretical Consideration of 3,4- and 3,5-Dimethoxybenzoyl Chlorides Solvolyses

  • Park, Kyoung-Ho;Kevill, Dennis N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2989-2994
    • /
    • 2013
  • The solvolysis rate constants of 3,4- (1) and 3,5-dimethoxybenzoyl (2) chlorides were measured in various pure and binary solvents at $25.0^{\circ}C$, and studied by application of the extended Grunwald-Winstein (G-W) equation, kinetic solvent isotope effect in methanolysis and activation parameters. The solvolysis of 1 was interpreted as the unimolecular pathway due to a predominant resonance effect from para-methoxy substituent like 4-methoxybenzoyl chloride (3), while that of 2 was evaluated as the dual mechanism, with unimolecular or bimolecular reaction pathway according to the character of solvent systems (high electrophilic/nucleophilic) chosen, caused by the inductive effect by two meta-methoxy substituents, no resonance one. In the solvolyses of 1 and 2 with two $-OCH_3$ groups, the resonance effect of para-methoxy substituent is more important to decide the mechanism than the inductive effect with other corresponding evidences.

Solvent Effects on the Solvolysis of 1-(4-Methoxyphenyl)-1-phenyl-2,2,2-trifluoroethyl Choloride. Influence of an Electron-Withdrawing α-Substituent on Carbonium Ion Center

  • 권정민;김성홍;여수동
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.11
    • /
    • pp.1056-1061
    • /
    • 1996
  • Solvolysis rates of 1-(4-methoxyphenyl)-l-phenyl-2,2,2-trifiuoroethyl chloride (1) and 1-(4-methoxyphenyl)-1-phenylethyl chloride (2) were measured in a variety of aqueous binary solvents, and the solvent effect was treated with the Grunwald-Winstein equation. The solvent effect on the solvolysis of 1 failed to give a single linear correlations using the ordinary Y or YCl, but exhibited the wide split pattern which could not be related to the solvent nucleophilicity. The improved correlations with YBnCl and extended dual-parameter treatment, log (k/k0)=mYCl+hI (mΔYΔ), were observed for the solvolysis of 1. These results suggest that the incipient cationic charge in the solvolysis of 1 is delocalized strongly into the aryl-rings in the transition state. While the solvent effect on the solvolysis of 2 is better correlated with Y or YCl than YBnCl but the linearity is not satisfactory. The correlation is comparably improved by the use of the extended Grunwald-Winstein equation, log (k/k0)=0.81YCl+0.26NOTs (R=0.994, SD=±0.12), indicating the cationic charge of reaction center of 2 was localized mostly in the transition state.

Linear Free Energy Relationship on the Chemical Shift of Imidoyl Proton in N-benzylideneaniline Derivatives by PMR Spectrometry (核磁氣 共鳴分光法에 義한 N-Benzylideneaniline 誘導體중 Imidoyl Proton 의 Chemical Shift 에 미치는 自由에너지 關係)

  • Nack Do Sung;Cheon Kyu Park;Moon kyu Park;Ki Sung Kwon;Kim, Tae Rin
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.277-282
    • /
    • 1985
  • The effects of linear free energy relationship (LFER) on the imidoyl proton (H${\alpha}$)-substituent chemical shift (SCS) in case of varying para-substituted C-phenyl group in N-benzylideneaniline derivatives were studied. The H${\alpha}$-SCS values and LFER parameters such as ${\sigma}$,${\sigma}^+$, ${\sigma}_I$,${\sigma}_R, F and R were applied to the Hammett, Okamoto-Brown, and Taft, Swain-Lupton's dual substituents parameter (DSP) equations. The results were: (1) the blending coefficient values, ${\lambda}$ = 2.8∼3.2, it's means that the resonance effect (R) was larger than inductive effect (I) and field effect (F), and (2) the values of percent resonance and percent field effects were %R = 66.6 and %F = 33.4, respectively, yielding the ratio of resonance effect (R) to field effect (F) of 2 : 1.

  • PDF