DOI QR코드

DOI QR Code

Kinetic and Theoretical Consideration of 3,4- and 3,5-Dimethoxybenzoyl Chlorides Solvolyses

  • Park, Kyoung-Ho (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Kevill, Dennis N. (Department of Chemistry and Biochemistry, Northern Illinois University)
  • Received : 2013.06.22
  • Accepted : 2013.07.15
  • Published : 2013.10.20

Abstract

The solvolysis rate constants of 3,4- (1) and 3,5-dimethoxybenzoyl (2) chlorides were measured in various pure and binary solvents at $25.0^{\circ}C$, and studied by application of the extended Grunwald-Winstein (G-W) equation, kinetic solvent isotope effect in methanolysis and activation parameters. The solvolysis of 1 was interpreted as the unimolecular pathway due to a predominant resonance effect from para-methoxy substituent like 4-methoxybenzoyl chloride (3), while that of 2 was evaluated as the dual mechanism, with unimolecular or bimolecular reaction pathway according to the character of solvent systems (high electrophilic/nucleophilic) chosen, caused by the inductive effect by two meta-methoxy substituents, no resonance one. In the solvolyses of 1 and 2 with two $-OCH_3$ groups, the resonance effect of para-methoxy substituent is more important to decide the mechanism than the inductive effect with other corresponding evidences.

Keywords

References

  1. Kevill, D. N.; D'Souza, M. J. J. Chem. Res. 2008, 61.
  2. Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846. https://doi.org/10.1021/ja01182a117
  3. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121. https://doi.org/10.1002/9780470171967.ch5
  4. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700. https://doi.org/10.1021/ja01150a078
  5. Kevill, D. N. In Advances in Quantitative Structure-Property Relationships; Charton, M., Ed.; JAI Press: Greenwich, CT, 1996, 1, 81-115.
  6. Bentley, T. W.; Carter, G. E.; Harris, H. C. J. Chem. Soc. Perkin Trans. 2 1985, 983.
  7. Bentley, T. W.; Harris, H. C. J. Chem. Soc. Perkin Trans. 2 1986, 619.
  8. Bentley, T. W.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1989, 1385.
  9. Bentley, T. W.; Shim, C. S. J. Chem. Soc. Perkin Trans. 2 1993, 1659.
  10. Liu, K.-T.; Chen, H.-I. J. Chem. Soc. Perkin Trans. 2 2000, 893.
  11. Bentley, T. W.; Harris, H. C. Int. J. Mol. Sci. 2011, 12, 4805. https://doi.org/10.3390/ijms12084805
  12. Kevill, D. N.; D'Souza, M. J. J. Phys. Org. Chem. 2002, 15, 881. https://doi.org/10.1002/poc.569
  13. Park, K.-H.; Kevill, D. N. J. Phys. Org. Chem. 2012, 25, 2. https://doi.org/10.1002/poc.1851
  14. Park, K.-H.; Kevill, D. N. J. Phys. Org. Chem. 2012, 25, 267. https://doi.org/10.1002/poc.1906
  15. Park, K.-H.; Kevill, D. N. J. Chem. Res. 2011, 647.
  16. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845. https://doi.org/10.1021/jo00005a034
  17. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834. https://doi.org/10.1021/jo9814905