• Title/Summary/Keyword: Dual chamber

Search Result 119, Processing Time 0.026 seconds

Point Cloud Measurement Using Improved Variance Focus Measure Operator

  • Yeni Li;Liang Hou;Yun Chen;Shaoqi Huang
    • Current Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.170-182
    • /
    • 2024
  • The dimensional accuracy and consistency of a dual oil circuit centrifugal fuel nozzle are important for fuel distribution and combustion efficiency in an engine combustion chamber. A point cloud measurement method was proposed to solve the geometric accuracy detection problem for the fuel nozzle. An improved variance focus measure operator was used to extract the depth point cloud. Compared with other traditional sharpness evaluation functions, the improved operator can generate the best evaluation curve, and has the least noise and the shortest calculation time. The experimental results of point cloud slicing measurement show that the best window size is 24 × 24 pixels. In the height measurement experiment of the standard sample block, the relative error is 2.32%, and in the fuel nozzle cone angle measurement experiment, the relative error is 2.46%, which can meet the high precision requirements of a dual oil circuit centrifugal fuel nozzle.

Emission Reduction by Mixture Formation in a Diesel-Natural Gas Dual-Fuel Engine at Low Loads (경유-천연가스 이종연료 엔진의 저부하 영역에서 혼합기 형성을 통한 배기배출 저감)

  • Park, Hyunwook;Lee, Junsun;Oh, Seungmook;Kim, Changup;Lee, Yongkyu;Bae, Choongsik
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.194-202
    • /
    • 2019
  • A mixture preparation strategy was proposed and evaluated in a diesel-natural gas dual-fuel engine to reduce hydrocarbon (HC) and carbon monoxide (CO) emissions under low load conditions. An experimental investigation was conducted in a single-cylinder compression-ignition engine. Natural gas was supplied with air during the intake stroke, and diesel was injected directly into the combustion chamber during the compression stroke. First, effects of diesel start of energizing (SOE) and natural gas substitution ratio on the combustion and exhaust gas emissions were analyzed. Based on the results, the mixture preparation strategy was established. A low natural gas substitution ratio and a high exhaust gas recirculation (EGR) rate were effective in reducing the HC and CO emissions.

Effects of Deposition Conditions on Properties of CuNi thin Films Fabricated by Co-Sputtering of Dual Targets (이중 타겟의 동시 스퍼터링을 이용한 CuNi 박막 제작시 증착변수가 박막의 물성에 미치는 영향)

  • Seo, Soo-Hyung;Lee, Jae-Yup;Park, Chang-Kyun;Park, Jin-Seok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.1
    • /
    • pp.11-16
    • /
    • 2001
  • CuNi alloy films are deposited by co-sputtering of dual targets (Cu and Ni, respectively). Effects of the co-sputtering conditions, such as powers applied to the targets, deposition pressures, and substrate temperatures, on the structural and electrical properties of deposited films are systematically investigated. The composition ratio of Ni/Cu is almost linearly decreased by increasing the DC power applied to the Cu target from 25.6 W to 69.7 W with the RF power applied to the Ni target unchanged(140 W). it is noted that the chamber pressure during deposition and the film thickness give rise to a change of the Ni/Cu ratio within the films deposited. The former may be due to a higher sputtering yield of Cu atom and the latter due to the re-sputtering phenomenon of Cu atoms on the surface of deposited film. The film deposited at higher pressures or at lower substrate temperatures have a smaller crystallite size, a higher electrical resistivity, and much more voids. This may be attributed to a lower surface mobility of sputtered atoms over the substrate.

  • PDF

Performance Analysis of the Pintle Thruster Using 1-D Simulation-II : Unsteady State Characteristics (1-D 시뮬레이션을 활용한 핀틀추력기의 성능해석-II : 비정상상태 특성)

  • Noh, Seonghyeon;Kim, Jihong;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.311-317
    • /
    • 2015
  • This paper describes how to apply one-dimensional simulation to predict unsteady state characteristics of the cold-gas pintle thruster. Mass flow rate, chamber pressure, and nozzle exit pressure are key parameters for thrust control. Chamber pressure rose and fell monotonously with the pintle stroke variation, while thrust variation was different from chamber pressure variation. During the forward pintle stroke operation, the thrust value tended to decrease initially and returned to increase when pintle speed and chamber free volume exceed some specified value. Even though one-dimensional simulation has the limitations to predict unsteady state characteristics, it is still useful for initial performance assessment of various thrusters which adopt an altitude compensation nozzle such as a dual-bell nozzle, prior to experiment or numerical analysis.

Gas Exchange Rates Measured Using a Dual-Tracer ($SF_6$ and $^3He$) Method in the Coastal Waters of Korea

  • Lee, Hyun-Woo;Lee, Ki-Tack;Kaown, Duk-In
    • Ocean Science Journal
    • /
    • v.43 no.1
    • /
    • pp.17-24
    • /
    • 2008
  • Over a period of 5 days between August 12 and 17, 2005, we performed a gas exchange experiment using the dual tracer method in a tidal coastal ocean located off the southern coast of Korea. The gas exchange rate was determined from temporal changes in the ratio of $^3He$ to $SF_6$ measured daily in the surface mixed layer. The measured gas exchange rate($k_{CO_2}$), normalized to a Schmidt number of 600 for $CO_2$ in fresh water at $20^{\circ}C$, was approximately $5.0\;cm\;h^{-1}$ at a mean wind speed of $3.9\;ms^{-1}$ during the study period. This value is significantly less than those obtained from floating chamber-based experiments performed previously in estuarine environments, but is similar in magnitude to values obtained using the dual tracer method in river and tidal coastal waters and values predicted on the basis of the relationship between the gas exchange rate and wind speed (Wanninkhof 1992), which is generally applicable to the open ocean. Our result is also consistent with the relationship of Raymond and Cole (2001), which was derived from experiments carried out in estuarine environments using $^{222}Rn$ and chlorofluorocarbons along with measurements undertaken in the Hudson River, Canada, using $SF_6$ and $^3He$. Our results indicate that tidal action in a microtidal region did not discernibly enhance the measured $k_{CO_2}$ value.

Effect of solution temperature on the mechanical properties of dual-cure resin cements

  • Kang, En-Sook;Jeon, Yeong-Chan;Jeong, Chang-Mo;Huh, Jung-Bo;Yun, Mi-Jung;Kwon, Yong-Hoon
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.133-139
    • /
    • 2013
  • PURPOSE. This study was to evaluate the effect of the solution temperature on the mechanical properties of dualcure resin cements. MATERIALS AND METHODS. For the study, five dual-cure resin cements were chosen and light cured. To evaluate the effect of temperature on the specimens, the light-cured specimens were immersed in deionized water at three different temperatures (4, 37 and $60^{\circ}C$) for 7 days. The control specimens were aged in a $37^{\circ}C$ dry and dark chamber for 24 hours. The mechanical properties of the light-cured specimens were evaluated using the Vickers hardness test, three-point bending test, and compression test, respectively. Both flexural and compressive properties were evaluated using a universal testing machine. The data were analyzed using a two way ANOVA with Tukey test to perform multiple comparisons (${\alpha}$=0.05). RESULTS. After immersion, the specimens showed significantly different microhardness, flexural, and compressive properties compared to the control case regardless of solution temperatures. Depending on the resin brand, the microhardness difference between the top and bottom surfaces ranged approximately 3.3-12.2%. Among the specimens, BisCem and Calibra showed the highest and lowest decrease of flexural strength, respectively. Also, Calibra and Multilink Automix showed the highest and lowest decrease of compressive strength, respectively compared to the control case. CONCLUSION. The examined dual-cure resin cements had compatible flexural and compressive properties with most methacrylate-based composite resins and the underlying dentin regardless of solution temperature. However, the effect of the solution temperature on the mechanical properties was not consistent and depended more on the resin brand.

Synchronous Control of an Asymmetrical Dual Redundant EHA (비대칭 이중화 EHA의 동기 제어)

  • Lee, Seong Ryeol;Hong, Yeh Sun
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • In this paper, an elementary force fighting problem was investigated. The problem is encountered when a double-rod type EHA(electro-hydrostatic actuator) is combined with a single-rod type EHA to build a redundant actuator system with synchronized motion. When the rod-side chambers of the two different types of EHAs have the same effective piston areas and are simultaneously pressurized by an external load, the two EHAs behave identically, sharing the external load equally. However, when the piston head-side chamber of the single rod type EHA, having a larger effective area than the rod-side chamber, is pressurized by the external load, an abnormal force fighting between the two EHAs occurs, unless their pump speeds are properly decoupled. In this study, the output drive forces of each EHA were obtained from the cylinder pressure signals and applied to the position control for each EHA to maintain the balance between their pump speeds. Adding minor force difference feedback loops to the position control, the force fighting phenomena could be eliminated and steady state synchronization errors were reduced. The power consumption of the pumps also could be remarkably reduced, avoiding unnecessarily high load pressures to the pumps.

Numerical Analysis for Hydrodynamic Performance of OWC Devices with Multiple Chambers in Waves

  • Kim, Jeong-Seok;Nam, Bo Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.21-31
    • /
    • 2022
  • In recent years, various studies have been conducted on oscillating-water-column-type wave energy converters (OWC-WECs) with multiple chambers with the objective of efficiently utilizing the limited space of offshore/onshore structures. In this study, a numerical investigation based on a numerical wave tank was conducted on single, dual, and triple OWC chambers to examine the hydrodynamic performances and the energy conversion characteristics of the multiple water columns. The boundary value problem with the Laplace equation was solved by using a numerical wave tank based on a finite element method. The validity of the current numerical method was confirmed by comparing it with the measured data in the previous experimental research. We undertook a series of numerical simulations and observed that the water column motion of sloshing mode in a single chamber can be changed into the piston motion of different phases in multiple OWC chambers. Therefore, the piston motion in the multiple chambers can generate considerable airflow at a specific resonant frequency. In addition, the division of the OWC chamber results in a reduction of the time-dependent variability of the final output power from the device. As a result, the application of the multiple chambers leads to an increase of the energy conversion performance as well as a decrease of the variability of the wave energy converter.

Multiphase CFD Analysis of Microbubble Generator using Swirl Flow (선회유동을 이용한 마이크로버블 발생기의 다상유동 전산유체역학 해석)

  • Yun, S.I.;Kim, H.S.;Kim, J.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.1
    • /
    • pp.27-32
    • /
    • 2022
  • Microbubble technology has been widely applied in various industrial fields. Recently, research on many types of microbubble application technology has been conducted experimentally, but there is a limit in deriving the optimal design and operating conditions. Therefore, if the computational fluid dynamics (CFD) analysis of multiphase flow is used to supplement these experimental studies, it is expected that the time and cost required for prototype production and evaluation tests will be minimized and optimal results will be derived. However, few studies have been conducted on multiphase flow CFD analysis to interpret fluid flow in microbubble generators using swirl flow. In this study, CFD simulation of multiphase flow was performed to analyze the air-water mixing process and fluid flow characteristics in a microbubble generator with a dual-chamber structure. Based on the simulation results, it was confirmed that a negative pressure was formed on the central axis of rotation due to the strong swirling flow. And it could be seen that the air inside the suction tube was introduced into the inner chamber of the microbubble generator. In addition, as the high-speed mixed fluid collided with external water sucked by the negative pressure near the outlet, a large amount of microbubbles was ejected due to the shear force between the two flows flowing in opposite directions.

The LaserFIB: new application opportunities combining a high-performance FIB-SEM with femtosecond laser processing in an integrated second chamber

  • Ben Tordoff;Cheryl Hartfield;Andrew J. Holwell;Stephan Hiller;Marcus Kaestner;Stephen Kelly;Jaehan Lee;Sascha Muller;Fabian Perez-Willard;Tobias Volkenandt;Robin White;Thomas Rodgers
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.24.1-24.11
    • /
    • 2020
  • The development of the femtosecond laser (fs laser) with its ability to provide extremely rapid athermal ablation of materials has initiated a renaissance in materials science. Sample milling rates for the fs laser are orders of magnitude greater than that of traditional focused ion beam (FIB) sources currently used. In combination with minimal surface post-processing requirements, this technology is proving to be a game changer for materials research. The development of a femtosecond laser attached to a focused ion beam scanning electron microscope (LaserFIB) enables numerous new capabilities, including access to deeply buried structures as well as the production of extremely large trenches, cross sections, pillars and TEM H-bars, all while preserving microstructure and avoiding or reducing FIB polishing. Several high impact applications are now possible due to this technology in the fields of crystallography, electronics, mechanical engineering, battery research and materials sample preparation. This review article summarizes the current opportunities for this new technology focusing on the materials science megatrends of engineering materials, energy materials and electronics.