Gas Exchange Rates Measured Using a Dual-Tracer ($SF_6$ and $^3He$) Method in the Coastal Waters of Korea

  • Lee, Hyun-Woo (School of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • Lee, Ki-Tack (School of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • Kaown, Duk-In (School of Earth and Environmental Sciences, Seoul National University)
  • Published : 2008.03.30

Abstract

Over a period of 5 days between August 12 and 17, 2005, we performed a gas exchange experiment using the dual tracer method in a tidal coastal ocean located off the southern coast of Korea. The gas exchange rate was determined from temporal changes in the ratio of $^3He$ to $SF_6$ measured daily in the surface mixed layer. The measured gas exchange rate($k_{CO_2}$), normalized to a Schmidt number of 600 for $CO_2$ in fresh water at $20^{\circ}C$, was approximately $5.0\;cm\;h^{-1}$ at a mean wind speed of $3.9\;ms^{-1}$ during the study period. This value is significantly less than those obtained from floating chamber-based experiments performed previously in estuarine environments, but is similar in magnitude to values obtained using the dual tracer method in river and tidal coastal waters and values predicted on the basis of the relationship between the gas exchange rate and wind speed (Wanninkhof 1992), which is generally applicable to the open ocean. Our result is also consistent with the relationship of Raymond and Cole (2001), which was derived from experiments carried out in estuarine environments using $^{222}Rn$ and chlorofluorocarbons along with measurements undertaken in the Hudson River, Canada, using $SF_6$ and $^3He$. Our results indicate that tidal action in a microtidal region did not discernibly enhance the measured $k_{CO_2}$ value.

Keywords

References

  1. Borges, A.V., J.-P. Vanderborght, L.-S. Schiettecatte, F. Gazeau, S. F. Smith, B. Delille, and M. Frankignoulle. 2004. Variability of the gas transfer velocity of $CO_{2}$ in a macrotial estuary (the Scheldt). Estuaries, 27, 593-603 https://doi.org/10.1007/BF02907647
  2. Chen, C.T.A., C.-T. Liu, W.S. Chuang, Y.J. Yang, F.-K. Shiah, T.Y. Tang, and S.W. Chung. 2003. Enhanced buoyancy and hence upwelling of subsurface Kuroshio waters after a typoon in the southern East China Sea. Mar. Chem., 42, 65-79
  3. Chen, C.T.A., W.-P. Hou, T. Gamo, and S.L. Wang. 2006. Carbonaterelated parameters of subsurface waters in the West Philippine, South China and Sulu Seas. Mar. Chem., 99, 151-161 https://doi.org/10.1016/j.marchem.2005.05.008
  4. Clark, J.F., R. Wanninkhof, P. Schlosser, and H.J. Simpson. 1994. Gas exchange rates in the tidal Hudson river using a dual tracer technique, Tellus, 46B, 274-285
  5. Donelan, M.A. 1990. Air-Sea Interaction. p. 239292. In: The Sea: Ocean Engineering Science 9, ed. by B.LeMehaute and D. Hanes. John Wiley and Sons, Inc., NY
  6. Hahm, D., G. Kim, Y.-W. Lee, S.-Y. Nam, K.-R. Kim, and K. Kim. 2005. Tidal influence on the sea-to-air transfer $CH_{4}$ in the coastal ocean. Tellus, 58B, 88-94
  7. Jahne, B., G. Heinz, and W. Dietrich. 1987. Measurements of the diffusion coefficients of sparingly soluble gases in water. J. Geophys. Res., 92, 10767-10776 https://doi.org/10.1029/JC092iC10p10767
  8. Kim, D.-O., K. Lee, S.-D. Choi, H.-S. Kang, J.-Z. Zhang, and Y.- S. Chang. 2005. Determination of diapycnal diffusion rates in the upper thermocline in the North Atlantic Ocean using sulfur hexafluoride. J. Geophys. Res., 110, C10010. doi: 10.1029/2004JC002835
  9. Koo, C.-M., K. Lee, M. Kim, and D.-O. Kim. 2005. Automated system for fast and accurate analysis of $SF_{6}$ injected in the surface ocean. Environ. Sci. Technol., 39, 8427-8433 https://doi.org/10.1021/es050149g
  10. Large, W.G. and S. Pong. 1981. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324-336 https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
  11. Ledwell, J.R. 1984. The variation of the gas transfer coefficient with molecular diffusivity. p. 293-302. In: Gas Transfer at Water Surfaces, ed. by W. Brutsaert and G. H. Jirka. Reidel, Norwell, Mass
  12. Liss, P.S. and L. Merlivat. 1986. Air-Sea gas exchange rates: Introduction and synthesis. p. 113-129. In: The Role of Air- Sea Exchange in Geochemical cycling, ed. by O. Buat-Ménatd. Reidel, Hingham, MA
  13. Lott, D.E. and W.J. Jenkins. 1984. An automated cryogenic charcoal trap system for helium isotope mass spectrometry. Rev. Sci. Instrum., 55, 1982-1988 https://doi.org/10.1063/1.1137692
  14. Mackenzie, F.T., A. Lerman, and L.M.B. Ver. 1998. Role of the continental margin in the global carbon balance during the past three centuries. Geology, 26, 423-426 https://doi.org/10.1130/0091-7613(1998)026<0423:ROTCMI>2.3.CO;2
  15. Matthews, C.J.D., V.L.St. Louis, and R.H. Hesslein. 2003. Comparison of three techniques used to measure diffusive gas exchange from sheltered aquatic surfaces. Environ. Sci. Technol., 37, 772-780 https://doi.org/10.1021/es0205838
  16. Nightingale, P.D., G. Malin, C.S. Law, A.J. Watson, P.S. Liss, M.I. Liddicoat, J. Boutin, and R.C. Upstill-Goddard. 2000a. In situ evaluation of air-sea gas exchange parameterization using novel conservative and volatile tracers. Global Biogeochem. Cycles, 14, 373-387 https://doi.org/10.1029/1999GB900091
  17. Nightingale, P.D., P.S. Liss, and P. Schlosser. 2000b. Measurements of air-sea gas transfer during an open ocean algal bloom. Geophys. Res. Lett., 27, 2117-2120 https://doi.org/10.1029/2000GL011541
  18. O'connor, D. and W. Dobbins. 1958. Mechanism of reaeration in natural streams. Trans. Amer. Soc. Civ. Eng., 123, 641-684
  19. Park, G.-H., K. Lee, C.-M. Koo, H.-W. Lee, C.-K. Lee, J.-S. Koo, T. Lee, S.-H. Ahn, H.-G. Kim, and B.-K. Park. 2005. A Sulfur hexafluoride-based Lagrangian study on initiation and accumulation of the red tide Cochlodinium polikrikoides in southern coastal waters of Korea. Limnol. Oceanogr., 50, 578-586 https://doi.org/10.4319/lo.2005.50.2.0578
  20. Raymond, P.A. and J.J. Cole. 2001. Gas exchange in rivers and estuaries: Choosing a gas transfer velocity. Estuaries, 24, 312-317 https://doi.org/10.2307/1352954
  21. Roether, W. and B. Kromer. 1984. Optimal application of the radon deficit method to obtain air-sea gas exchange rates. In: Gas Transfer at Water Surfaces, ed. by W. Brutaert, G.H. Jirka, and D. Reidel. Norwell, Mass
  22. Thomas, H., Y. Bozec, K. Elkalay, and H.J.W. de Baar. 2004. Enhanced open ocean storage of $CO_{2}$ from shelf sea pumping. Science, 304, 1005-1008 https://doi.org/10.1126/science.1095491
  23. Tsunogai, S., S. Watanabe, and T. Sato. 1999. Is there a 'continental shelf pump' for the absorption of atmospheric $CO_{2}$? Tellus, 51B, 701-712
  24. Upstill-Goddard, R.C. 2006. Air-sea gas exchange in the coastal zone. Estuar. Coas. Shelf Sci., 70, 388-404 https://doi.org/10.1016/j.ecss.2006.05.043
  25. Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res., 97, 7373-7382 https://doi.org/10.1029/92JC00188
  26. Wanninkhof, R., W. Asher, R. Weppernig, H. Chen, P. Schlosser, C. Langdon, and R. Sambrotto. 1993. Gas transfer experiment on Georges Bank using two volatile deliberate traces. J. Geophys. Res., 98, 20237-20248 https://doi.org/10.1029/93JC01844
  27. Wanninkhof, R., G. Hitchcock, W.J. Wiseman, G. Vargo, P.B. Ortner, W. Asher, D.T. Ho, P. Schlosser, M.-L. Dickson, R. Masserini, K. Fanning, and J.-Z. Zhang. 1997. Gas exchange, dispersion, and biological productivity on the west Florida shelf: Results from a Lagrangian tracer study. Geophys. Res. Lett., 24, 1767-1770 https://doi.org/10.1029/97GL01757
  28. Wanninkhof, R. and W.R. McGillis. 1999. A cubic relationship between air-sea $CO_{2}$ exchange and wind speed. Geophys. Res. Lett., 26, 1889-1892 https://doi.org/10.1029/1999GL900363
  29. Wanninkhof, R., K.F. Sullivan, and Z. Top. 2004. Air-sea gas transfer in the Southern Ocean. J. Geophys. Res., 109, C08S19. doi: 10.1029/2003JC001767
  30. Watson, A.J., R.C. Upstill-Goddard, and P.S. Liss. 1991. Air-sea exchange in rough and stormy seas measured by a dual tracer technique, Nature, 349, 145-147 https://doi.org/10.1038/349145a0