본 연구에서는 G/R 비의 실시간 결정을 목적으로 Dual Kalman Filter를 이용하였다. Dual Kalman Filter 는 이중추정(dual estimation)을 기반으로 하는 자료동화기법으로 기존 Kalman Filter와 상이한 상태-공간 모형으로 구성된다. 이에 Dual Kalman Filter와 기존 Kalman Filter의 적용성능을 비교 검토하였으며, 다양한 비교를 위하여 강우의 임계치와 누적시간의 고려여부에 따른 결과를 추가적으로 검토하였다. 두 기법의 적용성능 비교결과 Dual Kalman Filter가 우수한 것으로 나타났다. 이는 Dual Kalman Filter 기법이 G/R 비의 큰 변동성과 이상치를 효과적으로 필터링하고, 시계열 모형의 매개변수를 실시간으로 갱신하여 정확한 예측치를 추정하였기 때문인 것으로 판단된다.
본 연구에서는 듀얼칼만필터를 이용하여 이중편파 레이더 강우의 편의를 실시간으로 보정할 수 있는 방법을 제안하였다. 듀얼칼만필터는 기존의 칼만필터와 달리 두 개의 시스템(상태추정시스템, 모형추정시스템)이 동시에 가동되면서 실시간으로 상태변수가 예측된다. 강우강도 추정치에 보정계수를 적용함으로써 편의보정이 이루어지며, 보정계수는 듀얼칼만필터의 상태-공간모형에 의해 실시간으로 예측된다. 해당 기법을 2016년 7월에 발생한 지속시간이 긴 호우사상에 대해 적용하고 편의보정 결과를 평가하였다. 먼저, 보정계수는 대부분 1과 2 사이의 값으로 산정되어 지상관측 강우강도보다 레이더 강우강도가 약간 과소추정되는 경향을 보였다. 보정계수에 대한 시계열을 설명할 수 있는 모형으로는 AR(1) 모형이 적합한 것으로 확인되었다. 아울러 듀얼칼만필터로 예측한 보정계수는 관측된 자료를 이용하여 산정한 보정계수와 유사한 경향을 가지는 것으로 나타났다. 칼만필터와의 비교 결과, 보정계수의 변동성이 커질수록 듀얼칼만필터가 칼만필터에 비해 우수한 예측 성능을 가지는 것으로 확인되었다. 본 연구를 통해 강우의 변동성이 크고, 지속시간이 긴 호우사상에 대한 듀얼칼만필터의 적합성이 검증되었다.
The classical dynamic backpropagation learning algorithm has the problems of learning speed and the determine of learning parameter. The Extend Kalman Filter(EKF) is used effectively for a state estimation method for a non linear dynamic system. This paper presents a learning algorithm using Dual Extended Kalman Filter(DEKF) for Fully Recurrent Neural Network(FRNN). This DEKF learning algorithm gives the minimum variance estimate of the weights and the hidden outputs. The proposed DEKF learning algorithm is applied to the system identification of a nonlinear SISO system and compared with dynamic backpropagation learning algorithm.
This article presents a new nonlinear joint (state and parameter) estimation algorithm based on fusion of Kalman filter and randomized unscented Kalman filter (UKF), called Kalman randomized joint UKF (KR-JUKF). It is assumed that the measurement equation is linear. The KRJUKF is suitable for time varying and severe nonlinear dynamics and does not have any systematic error. Finally, joint-EKF, dual-EKF, joint-UKF and KR-JUKF are applied to a CSTR with cooling jacket, in which production of propylene glycol happens and performance of KR-JUKF is evaluated.
The fusion of the GPS (Global Positioning System) and DR (Dead Reckoning) is widely used for position and latitude estimation of vehicles such as a mobile robot, aerial vehicle and marine vehicle. Among the many types of aerial vehicles, grater focus is given on the quad-rotor and accuracy of the position information is becoming more important. In order to exactly estimate the position information, we propose the fusion method of GPS and Gyroscope sensor using the DEKF (Dual Extended Kalman Filter). The DEKF has an advantage of simultaneously estimating state value and a parameter of dynamical system. It can also be used even if state value is not available. In order to analyze the performance of DEKF, the computer simulation for estimating the position, the velocity and the angle in a circle trajectory of quad-rotor was done. As it can be seen from the simulation results using own proposed DEKF instead of EKF on own fusion method in the navigation of a quad-rotor gave better performance values.
제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
/
pp.161-167
/
1993
This paper presents robustness properties of the Kalman Filter ad the associated LQG/LTR method for linear time-invariant systems having delays in both the state and output. A circle condition relating to the return difference matrix associated with the Kalman filter is derived. Using this circle condition, it is shown that the Kalman filter guarantees(1/2, .inf.) gain margin and .+-.60.deg. phase margin, which are the same as those for nondelay systems. However, it is shown that, even for minimum phase plants, the LQG/LTR method can not recover the target loop transfer function. Instead, an upper bound on the recovery error is obtained using an upper bound of the solution of the Kalman filter Riccati equations. Finally, some dual properties between output-delated system and input-delayed systems are exploited.
인공위성의 반작용 휠 클러스터는 보통 4개의 반작용 휠로 구성이 된다. 각각의 반작용 휠은 인공위성의 자세 축과 일치하게 배치되지 않기 때문에 하나의 반작용 휠에 고장이 일어난 경우 반작용 휠 자체의 센서를 이용한 방법 외에는 고장 분리가 매우 어렵다. 본 논문에서는 이중 필터를 이용하여 고장 검출에 효과적인 파라미터를 구성하고, 인공위성의 반작용 휠 각각이 정지 고장을 일으킬 경우를 가정하여 이중 필터와 다중 가설 필터를 이용하여 반작용 휠의 고장분리기를 설계하였다. 또한 이를 4개의 반작용 휠로 자세제어가 이루어지는 인공위성 시스템에 적용한 시뮬레이션으로 고장 검출 및 분리 성능이 향상되는 것을 검증하였다.
International Journal of Control, Automation, and Systems
/
제5권4호
/
pp.388-396
/
2007
This paper describes a multipath estimation method for Global Positioning System (GPS) dual frequency carrier phase measurements. Multipath is a major error source in high precision GPS applications, i.e., carrier phase measurements for precise positioning and attitude determinations. In order to estimate and remove multipath at carrier phase measurements, an array GPS antenna system has been used. The known geometry between the antennas is used to estimate multipath parameters. Dual frequency carrier phase measurements increase the redundancy of measurements, so it can reduce the number of antennas. The unscented Kalman filter (UKF) is recently applied to many areas to overcome some of the limitations of the extended Kalman filter (EKF) such as weakness to severe nonlinearity. This paper uses the UKF for estimating multipath parameters. A series of simulations were performed with GPS antenna arrays located on a straight line with one reflector. The geometry information of the antenna array reduces the number of estimated multipath parameters from four to three. Both the EKF and the UKF are used as estimation algorithms and the results of the EKF and the UKF are compared. When the initial parameters are far from true parameters, the UKF shows better performance than the EKF.
This study investigates an application of the Hamming network-dual extended Kalman filter (DEKF) based on pattern recognition for high accuracy state-of-charge (SOC)/capacity estimation and state-of-health (SOH) prediction at various temperatures. The averaged nine discharging/charging voltage-temperature (DCVT) patterns for ten fresh Li-Ion cells at experimental temperatures are measured as representative patterns, together with cell model parameters. Through statistical analysis, the Hamming network is applied to identify the representative pattern that matches most closely with the pattern of an arbitrary cell measured at any temperature. Based on temperature-checking process, model parameters for a representative DCVT pattern can then be applied to estimate SOC/capacity and to predict SOH of an arbitrary cell using the DEKF. This avoids the need for repeated parameter measuremet.
Global Navigation Satellite Systems (GNSS) based precise positioning using Real Time Kinematic (RTK) technique has been proposed as an enabler of the formation operation of moving vehicles. In RTK methods, the integer ambiguity of GNSS carrier phase measurements must be resolved. Although there have been many proposed algorithms for the integer ambiguity resolution, the widelane combination of carrier phase measurements and LAMBDA methods have gained the most popularity in literatures when dual frequency GNSS measurements were used. In this paper, we evaluated five alternative methods to determine relative positions of moving base and rover receivers; the round-off scheme of widelane carrier phase, instant least-squares and Kalman filter-based LAMBDA with widelane carrier phase, instant least-squares and Kalman filter-based LAMBDA with dual frequency measurements. The paper presented the performance of each method using flight test data, which showed their strength and weakness in the aspects of time-to-first-fix, ambiguity resolution success ratio, and relative position errors. Based on that, we provided practical recommendations of RTK operations for moving vehicles.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.