• Title/Summary/Keyword: Dual Drainage

Search Result 38, Processing Time 0.024 seconds

STUDIES OF DUAL COMPONENT AND MICROPARTICALE RETENTION SYSTEM IN PAPERMAKING ON DYNAMIC DRAINAGE CONDITION

  • Su, Xie-Lai;Yi, Wand-Hai;Shan, Chen-Fu;Quan, Long-Yan
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.125-129
    • /
    • 1999
  • This paper dealt with effect of dual component and micropartical retention system on papermaking. First-pass retention under dynamic drainage condition was studied in neutral and alkaline papermaking system. Cationic starches, amphoteric starches and amphoteric polyacrylamide were added prior to high shear force, then anionic. The system is found to be very useful to inprove filler retention. For mitigating unfavorable effect of interfering sub-stances, anionic trash catcher(ATC) such as p-DADMAC was tested in this study.

GIS-based Urban Flood Inundation Analysis Model Considering Building Effect (건물영향을 고려한 GIS기반 도시침수해석 모형)

  • Lee, Chang-Hee;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.3
    • /
    • pp.223-236
    • /
    • 2007
  • Recently in urban area flood damages increase due to local concentrated heavy rainfall. Even in the cities where stormwater drainage systems are relatively well established flood damage still occurs because of the capacity limitations of the existing stormwater drainage systems. When the flood exceeds the capacity limitation of the urban storm sewer system, it yields huge property losses of public facilities involving roadway inundation to paralyze industrial and transportation system of the city. To prevent such flood damages in urban area, it is necessary to develop adequate inundation analysis model which can consider complicated geometry of urban area and artificial drainage system simultaneously. The Dual-Drainage model used in this study is the urban inundation analysis model which combines SWMM with DEM based 2-dimensional surface flood inundation model. In this study, the dual drainage model has been modified to consider the effect of complex buildings in urban area. Through the simulation of time variable inundation process, it is possible to identify inundation alert locations as well as to establish emergency action plan for the residencial area vulnerable to flood inundation.

Dual-Drainage Urban Inundation Analysis Model (Dual-Drainage 도시침수해석)

  • Han, Kun-Yeun;Lee, Chang-Hee;Kim, Ji-Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.237-241
    • /
    • 2006
  • 최근에 들어 도시지역에서는 국지성 집중호우에 의한 홍수피해가 증가하는 경향이 있으며, 우수설비 시스템이 비교적 갖추어진 개발 지역에서도 기존의 우수설비시스템의 용량이 초과되어 큰 침수피해가 발생하고 있다. 홍수규모가 배수시스템의 용량을 초과할 경우 건물, 공공기반시설 등 재산 및 인명 등에 있어 많은 피해를 야기하고 있으며, 도로의 침수는 운송 시스템의 기능에 문제를 일으키게 되어 도시의 산업과 기능을 마비시킨다. 이러한 도시지역 홍수에 대비하여 도시지역의 복잡한 지형 형상과 인위적 배수시스템을 함께 고려하여 해석할 수 있는 침수해석모형의 개발이 필요하다. MOUSE와 SWMM(Storm Water Management Model) 계열 모형들(EPA SWMM, MIKE SWMM, XP SWMM, PC SWMM)(Huber and Dickinson, 1988)은 도시유출해석에 많이 이용되고 있다. 그러나, 이들 모형들은 과부하된 유입구에서의 범람되는 홍수유량곡선만을 제공하며 지표면 범람 지역, 수심, 및 침수기간에 대한 상세한 정보를 제공하지 못한다. 따라서, 도시배수체계모형과 도시침수모형에 대해 상호연계를 수행할 수 있는 새로운 도시범람 모형이 도시지역에서 홍수로 인한 침수해석을 모의하는데 필요하다. 배수시스템 해석 모형의 계산결과를 이용하여 침수해석을 수행하는 연계모형의 경우 침수초기 월류지점으로부터의 침수진행과정을 잘 모의할 수 있다. 그러나, 지형의 기복이 있는 유역에서 배수시스템을 통한 지표침수유량의 배수과정을 고려하지 못함으로 인하여, 월류발생이 끝난 후 일부지점이 계속 침수된 채 있게 된다. 이러한 연계모형의 한계로 인하여 두 모형의 통합모형이 필요하다. 즉, 강우 혹은 월류유량으로 발생한 지표유량 중 일부분이 과부하가 발생하지 않는 유입구 지점을 통과할 때 배수시스템으로 유입되는 것을 고려할 수 있고, 유입된 유량은 배수시스템 내의 흐름에 반영되도록 배수시스템과 침수해석모형을 통합한 모형 개발이 필요하다. 그러기 위해서는 지표면과 배수시스템에 대한 수리학적 관계를 정립하여야 한다. 본 연구에서는 배수시스템 해석 모형과 도시침수해석 모형을 통합하고, 두 모형간의 유량의 전송과정을 수리학적 관계를 고려한 dual-drainage 도시침수해석모형을 개발하였다. 이를 위해 도시지역 배수시스템 해석 모형으로 널리 이용되고 있는 SWMM모형을 이용하여 지표면으로의 월류량을 산정하고 유입된 지표유량에 대해서 배수시스템에서의 흐름해석을 수행하였다. 그리고, 침수해석을 위해서는 2차원 침수해석을 위한 DEM기반 침수해석모형을 개발하였고, 건물의 영향을 고려할 수 있도록 구성하였다. 본 연구결과 지표류 유출 해석의 물리적 특성을 잘 반영하며, 도시지역의 복잡한 배수시스템 해석모형과 지표범람 모형을 통합한 모형 개발로 인해 더욱 정교한 도시지역에서의 홍수 범람 해석을 실시할 수 있을 것으로 판단된다. 본 모형의 개발로 침수상황의 시간별 진행과정을 분석함으로써 도시홍수에 대한 침수위험 지점 파악 및 주민대피지도 구축 등에 활용될 수 있을 것으로 판단된다.

  • PDF

Derivation of rainfall threshold for urban flood warning based on the dual drainage model simulation

  • Dao, Duc Anh;Kim, Dongkyun;Tran, Dang Hai Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.141-141
    • /
    • 2021
  • This study proposed an equation for Rainfall Threshold for Flood Warning (RTFW) for urban areas based on computer simulations. First, a coupled 1D-2D dual-drainage model was developed for nine watersheds in Seoul, Korea. Next, the model simulation was repeated for a total of 540 combinations of the synthetic rainfall events and watershed imperviousness (9 watersheds × 4 NRCS Curve Number (CN) values × 15 rainfall events). Then, the results of the 101 simulations with the critical flooded depth (0.25m-0.35m) were used to develop the equation that relates the value of RTFW to the rainfall event temporal variability (represented as coefficient of variation) and the watershed Curve Number. The results suggest that 1) the rainfall with greater temporal variability causes critical floods with less amount of total rainfall; and that 2) the greater imperviousness requires less rainfall to have critical floods. For validation, the proposed equation was applied for the flood warning system with two storm events occurred in 2010 and 2011 over 239 watersheds in Seoul. The results of the application showed high performance of the warning system in issuing the flood warning, with the hit, false and missed alarm rates at 68%, 32% and 7.4% respectively for the 2010 event and 49%, 51% and 10.7% for the event in 2011.

  • PDF

Analysis of Urban Inundation Considering Building Footprints Based on Dual-Drainage Scheme (건물의 영향을 고려한 이중배수체계기반 침수해석)

  • Lee, Jeong-Young;Jin, Gi-Ho;Ha, Sung-Ryong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.40-51
    • /
    • 2014
  • This study aims to investigate urban inundation considering building footprints based on dual-drainage scheme. For this purpose, LiDAR data is cultivated to generate two original data set in terms of DEM with $1{\times}1$ meter and building layer of the study drainage area in Seoul and then the building layer is overlapped as vector polygon with the mesh data with the same size as DEM. Then, terrain data for modeling were re-sampled to reduce resolution as $10{\times}10$ meters. As results, the simulated depth without considering building footprints has a tendency to underestimate the inundation depth compared to observed data analized by CCTV imagery. Otherwise, the simulation result considering building footprints revealed definitely higher fitness. The difference of inundation depth came from the variation of inundation volume which was relevant to inundation extent. If the building footprints are enlarged, the possible inundation depth is increased, which results in being inundation depth higher because hydrological conditions such as rainfall depth are conservational. Otherwise, according to comparison of inundation extents, there were no significant difference but the case of considering building footprint was revealed slightly higher fitness. Thus, it is concluded that the considering building footprint for inundation analysis of urban watershed should be required to improve simulation accuracy synthetically.

Stationary Dual-Porosity Fractal Model of Groundwater Flow in Fractured Aquifers (균일대수층내 지하수 유동에 관한 정상류의 이중공극 프락탈 모델)

  • ;Bidaux, Pasal
    • The Journal of Engineering Geology
    • /
    • v.4 no.2
    • /
    • pp.127-138
    • /
    • 1994
  • The stationary dual-porosity model is not sufficient to describe the hydraulic characteristics of fractured aquifers as the groundwater flow in fractured aquifers is often controlled by the fractal geometry of fractures. This study deals with new stationary dual-porosity fractal model. This model simulates pseudo-steady state flow from matrix block to fissure in the fractal aquifer. Furthermore, it considers storage capacity and well loss effect at the production well. Type curves for different flow dimensions with different drainage factors are plotted. This new model has been applied to experimental data. The result of the interpretation shows a good accordance between the theoretical model and the observed data.

  • PDF

Retention, Drainage, Formation, and Fracture Toughness Depending on Retention System, Molecular Weights of Polyelectrolytes and Dosage Sequences (보류시스템, 고분자 전해질 분자량과 약품투입순서에 따른 보류, 탈수, 지합, 파괴인성의 변화)

  • Chae, Hee-Jae;Kim, Mun-Sung;Park, Chang-Soon;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.2
    • /
    • pp.13-19
    • /
    • 2009
  • In order to produce high quality paper at the lowest cost in high speed, typically various polyelectrolytes as retention aids were used. Retention systems such as single polymer system, dual polymer system, and microparticle system were used. The objective of this study was to analyze the changes of retention, drainage, formation and fracture toughness depending on types of retention system, molecular weight of C-PAM and dosage sequences of agents. When single polymer system was applied, retention was increased with poor formation and drainage. When common microparticle system(C-PAM/bentonite) was used, high molecular weight PAM gave high retention and fast drainage, but poor formation. When the microparticle system with reverse dosage sequence(bentonite/C-PAM) was used, low molecular weight PAM gave high retention, fast drainage and good formation. When various retention agents were applied, fracture toughness was increased than that of blank. When using high molecular weight PAM and consequently causing excessive flocculation, fracture toughness was decreased.

Application of PEO/Cofactor System on Papermaking Process for Recycled Fibers (재생 지료 공정에서의 PEO/cofactor 보류 시스템의 적용)

  • Jung, Chul-Hun;Lee, Jin-Ho;Kil, Jung-Ha;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.25-31
    • /
    • 2012
  • Ionic trash in furnish decreases retention and drainage performance of the microparticle retention system using recycled fibers in closed papermaking system. Two retention systems, such as the microparticle system and the PEO/cofactor system, were compared and analyzed to improve retention. The PEO/cofactor system achieved similar retention performance at low addition level as the microparticle system. Optimum ratio of PEO/cofactor dual polymer system was 1:10. Ash retention was increased when using the fixing agent. As the TMP ratio increased, the PEO/cofactor system was more efficient in retention and drainage than the other system. The high molecular weight and non-ionic polymer retention system had less effect on flocculation hindrance than the traditional electrostatic retention system.

Spontaneous Closure of Delayed Esophageal Perforation: By temporary cervical fistulation with dual drainages (식도천공의 자연폐쇄치료[경부식도루 조성술과 이중배액법에 의한]:1예 보고)

  • Oh, Bong-Seok;Choi, Jong-Beom;Lee, Dong-Jun
    • Journal of Chest Surgery
    • /
    • v.14 no.1
    • /
    • pp.77-82
    • /
    • 1981
  • The esophageal perforation is the most rapidly fatal and most serious perforation of the gastrointestinal tract. The 53 year old male patient was admitted because of substernal and epigastric pain altar esophageal bougienage for the indigestion and the difficult swallowing before about 18 hours. On esophagogram, there was the extravasation of contrast media at the right side of the lower esophagus [retrocardiac segment]. The emergency thoractotomy, debridement and suture closure with drainage were performed. But after 7 days the esophageal leakage was complicated again with pus discharge, although primary repair was done. On the 13th hospital day, the temporary cervical esophageal fistulation with dual drainages was made under general anesthesia. On the 38th day after this procedure, the esophageal leakage was closed spontaneously. On the 63rd hospital day the cervical fistulation was repaired and ever since the esophageal passage was good without leakage or swallowing difficulty.

  • PDF

Production of High Loaded Paper by Dual Flow Addition of Fillers (II) - Effect of Location of Starch Addition - (충전제 투입 위치 이원화에 의한 고충전지 제조 (II) - 전분 투입 위치의 영향 -)

  • Choi, Do-Chim;Won, Jong Myoung;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.84-92
    • /
    • 2015
  • Fillers have been used to improve the optical and printing properties and to reduce the production cost while increasing the filler content in paper causes adverse effects on paper strength. In the previous study, it was shown that the thick stock addition of filler can increase the filler content without significantly sacrificing paper strength. This study was carried out to elucidate the effect of the location of starch addition (before or after the filler addition) on handsheet properties and a papermaking process as a part of developing the thick stock loading technology. In addition, effects of dual flow addition of cationic starch were evaluated. It was found that paper strength was superior when cationic starch was added after the filler addition. No adverse effects on optical properties, formation and filler retention were observed. Drainage was a bit slower when starch was added after the filler addition, which shall be resolved with regulating other factors. Dual flow addition of cationic starch before and after filler addition did not show any special advantage.