• Title/Summary/Keyword: Dual Converter

Search Result 355, Processing Time 0.023 seconds

Practical Design Methodology of Dual Active Bridge Converter as Isolated Bi-directional DC-DC Converter for Solid State Transformer (Solid State Transformer를 위한 양방향 Dual Active Bridge DC-DC 컨버터의 설계 기법)

  • Choi, Hyun-Jun;Lee, Won-Bin;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.102-108
    • /
    • 2017
  • Proper design guides are proposed for a practical dual-active bridge (DAB) converter based on the mathematical model on the steady state. The DAB converter is popular in bidirectional application due to its zero-voltage capability and easy bidirectional operation for seamless control, high efficiency, and performance. Some design considerations are taken to overcome the limitation of the DAB converter. The practical design methodology of power stage is discussed to minimize the conduction and switching losses of the DAB converter. Small-signal model and frequency response are derived and analyzed based on the generalized average method, which considers equivalent series resistance, to improve the dynamics, stability, and reliability with voltage regulation of the practical DAB converter. The design of closed-loop control is discussed by the derived small-signal model to obtain the pertinent gain and phase margin in steady-state operation. Experimental results of a 3.3 kW prototype of DAB converter demonstrate the validity and effectiveness of the proposed methods.

Zero-Voltage Switching Dual Inductor-fed DC-DC Converter Integrated with Parallel Boost Converter

  • Seong, Hyun-Wook;Park, Ki-Bum;Moon, Gun-Woo;Youn, Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.523-525
    • /
    • 2008
  • Novel zero-voltage switching(ZVS) dual inductor-fed DC-DC converter integrating a conventional dual inductor-fed boost converter(DIFBC) and a parallel bidirectional boost converter has been proposed. Most of current-fed type boost topologies including dual inductor schemes have crucial defects such as a high voltage spike on the main switch when it comes to turning off, an unattainable soft start-up due to the limited range of duty ratio, above 50%, and considerable switching losses due to the hard switching. By adding two auxiliary switches and an output capacitor on the conventional DIFBC, the proposed circuit can solve mentioned problems and improve the efficiency with simple methods. The operational principle and theoretical analysis of the proposed converter have been included. Experimental results based on a 42V input, 400V/1A output and 50kHz prototype are shown to verify the proposed scheme.

  • PDF

A New PWM DC/DC Converter with Isolated Dual Output Using Single Power Stage

  • Lee, Dong-Yun;Hyun, Dong-Seok;Ick Choy
    • Journal of Power Electronics
    • /
    • v.2 no.4
    • /
    • pp.312-324
    • /
    • 2002
  • This paper presents a new PWM DC/DC converter with dual output power using single power stage, which has the isolation characteristics between each dual output. The proposed converter topology consists of two switches ($S_B$ and $S_F$) and only single secondary winding. Therefore, the proposed converter has better advantages of not only low cost and small size but also high power density because of using minimum components and devices compared with conventional methods which use multi winding transformers or several converters. The operating principle of the proposed converter topology, which includes the conventional auxiliary ZVT (Zero-Voltage-Transition) circuit to implement soft switching of the main switch, is illustrated in detail and the validity of the proposed converter is verified through several simulated and experimental results.

Asymmetrical Pulse-Width-Modulated Full-Bridge Secondary Dual Resonance DC-DC Converter

  • Chen, Zhangyong;Zhou, Qun;Xu, Jianping;Zhou, Xiang
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1224-1232
    • /
    • 2014
  • A full-bridge secondary dual-resonant DC-DC converter using the asymmetrical pulse-width modulated (APWM) strategy is proposed in this paper. The proposed converter achieves zero-voltage switching for the power switches and zero-current switching for the rectifier diodes in the whole load range without the help of any auxiliary circuit. Given the use of the APWM strategy, a circulating current that exists in a traditional phase-shift full-bridge converter is eliminated. The voltage stress of secondary rectifier diodes in the proposed converter is also clamped to the output voltage. Thus, the existing voltage oscillation of diodes in traditional PSFB converters is eliminated. This paper presents the circuit configuration of the proposed converter and analyzes its operating principle. Experimental results of a 1 kW 385 V/48 V prototype are presented to verify the analysis results of the proposed converter.

Analysis and Design of DC-DC Converter with Independent Dual Outputs (독립적인 이중 출력을 갖는 DC-DC 컨버터의 해석 및 설계)

  • Heo, Tae-Won;Park, Ji-Ho;Kim, Dong-Wan;Woo, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.4
    • /
    • pp.171-178
    • /
    • 2005
  • The proposed dual-output DC-DC converter that bases on flyback converter can obtain two output voltage with non-isolated main-output and isolated sub-output at the same time using single-winding high frequency transformer. It can solve problems in multi-winding converter that use one main-switch, and also control quality of isolated sub-output voltage can be improved by additional sub-switch to the second. For analysis and design of the proposed converter system, converters are classified as operation mode from switching state and are become modeling by applying state space averaging method. Steady-state characteristics and dynamic characteristics are analyzed by DC component and perturbation component from state space averaging model. From experiment converter, validity of analysis and design for the propose converter system is confirm.

A New Dual-Active Soft-Switching Converter for an MTEM Electromagnetic Transmitter

  • Wang, Xuhong;Zhang, Yiming;Liu, Wei
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1454-1468
    • /
    • 2017
  • In this study, a new dual-active soft-switching converter is proposed to improve conversion efficiency and extend the load range for an MTEM electromagnetic transmitter in geological exploration. Unlike a conventional DC/DC converter, the proposed converter can operate in passive soft-switching, single-active soft-switching, or dual-active soft-switching modes depending on the change in load power. The main switches and lagging auxiliary switches of the converter can attain soft-switching over the entire load range. The conduction and switching losses are greatly reduced compared with those of ordinary converters under the action of the cut-off diodes and auxiliary windings coupled to the main transformer in the auxiliary circuits. The conversion efficiency of the proposed converter is significantly improved, especially under light-load conditions. First, the working principle of the proposed converter is analyzed in detail. Second, the relationship between the different operating modes and the load power is given and the design principle of the auxiliary circuit is presented. Finally, the Saber simulation and experimental results verify the feasibility and validity of the converter and a 50 kW prototype is implemented.

The Dual Design of Fuel Cell Hybrid Power System using Dual Converter PCS (1.5kW 연료전지 복합발전 시스템의 듀얼 컨버터 설계)

  • Shin, Soo-Cheol;Lee, Hee-Jun;Hong, Suk-Jin;Kim, Hak-Sung;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.67-75
    • /
    • 2013
  • In this paper, parallel input/serial output dual converter is designed appropriately for fuel cell hybrid power system. In case of proposed converter, zero voltage switching condition is designed without additional resonance device using leakage inductance of transformer and output capacitance of switch, and zero voltage switching method is used. Also, the system method is for increasing power by connecting half-bridge in parallel and increasing output voltage by connecting secondary output of transformer in serial. Through this method we can increase power and decrease volume of system. So in this paper, dual converter is designed. 1.5kW fuel cell hybrid power system was implemented, and system operation and stability was verified through experiment.

Optimized Design of Bi-Directional Dual Active Bridge Converter for Low-Voltage Battery Charger

  • Jeong, Dong-Keun;Ryu, Myung-Hyo;Kim, Heung-Geun;Kim, Hee-Je
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.468-477
    • /
    • 2014
  • This study proposes an optimized design of a dual active bridge converter for a low-voltage charger in a military uninterrupted power supply (UPS) system. The dual active bridge converter is among various bi-directional DC/DC converters that possess a high-efficiency isolated bi-directional converter. In the general design, the zero-voltage switching(ZVS) region is reduced when the battery voltage is high. By contrast, efficiency is low because of high conduction losses when the battery voltage is low. Variable switching frequency is applied to increase the ZVS region and the power conversion efficiency, depending on battery voltage changes. At the same duty, the same power is obtained regardless of the battery voltage using the variable switching frequency. The proposed method is applied to a 5 kW prototype dual active bridge converter, and the experimental results are analyzed and verified.

Initial Firing Angle Control of Parallel Multi-Pulse Thyristor Dual Converter for Urban Railway Power Substations

  • Kim, Sung-An;Han, Sung-Wo;Cho, Yun-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.674-682
    • /
    • 2017
  • This paper presents an optimal initial firing angle control based on the energy consumption and regenerative energy of a parallel multi-pulse thyristor dual converter for urban railway power substations. To prevent short circuiting the thyristor dual converter, a hysteresis band for maintaining a zero-current discontinuous section (ZCDS) is essential during mode changes. During conversion from the ZCDS to forward or reverse mode, the DC trolley voltage can be stabilized by selecting the optimal initial firing angle without an overshoot and slow response. However, the optimal initial firing angle is different depending on the line impedance of each converter. Therefore, the control algorithm for tracking the optimal initial firing angle is proposed to eliminate the overshoot and slow response of DC trolley voltage. Simulations and experiments show that the proposed algorithm yields the fastest DC voltage control performance in the transient state by tracking the optimal firing angle.

A New Soft Switching Dual Input Converter for Renewable Energy Systems

  • Harchegani, Amir Torki;Mahdavi, Mohammad
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1127-1136
    • /
    • 2017
  • This paper proposes a new soft switching dual input converter for renewable energy systems. Multi-input converters are produced by combining discrete converters. These converters reduce the number of circuit elements, cost, volume and weight of the converter and provide a constant output power in different weather conditions. Furthermore, soft switching techniques can be applied to increase efficiency. In this paper, a Zero Voltage Transition (ZVT) dual input boost converter is presented. Only one auxiliary circuit is used to provide the soft switching condition for all of the semiconductor elements. The proposed converter, which is simulated by ORCAD software, is theoretically analyzed. To confirm the validity of the theoretical analysis, a prototype of proposed converter was constructed. Simulation and experimental results confirm the theoretical analysis. An efficiency comparison shows a one percent improvement at nominal loads.