• Title/Summary/Keyword: Dual Communication Line

Search Result 104, Processing Time 0.017 seconds

Miniaturized meander-line dual-band implantable antenna for biotelemetry applications

  • Rajagopal Kangeyan;Madurakavi Karthikeyan
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.413-420
    • /
    • 2024
  • A dual-band bio-implantable compact antenna with a meander-line structure is presented. The proposed meander-line antenna resonates at the industrial, scientific, and medical (2.4 GHz) and wireless medical telemetry (1.4 GHz) bands. The meander-line structure is selected as a radiating patch given its versatile and effective design. With a dimension of only 10 mm × 10 mm × 0.635 mm, the designed antenna is compact. Considering a skin phantom, the proposed antenna was designed, optimized, and simulated. The Rogers RT/duroid 6010 substrate material with high dielectric constant was used to fabricate the meander-line dual-band implantable antenna, which was validated experimentally. The superstrate was made of the same material. Experiments were conducted on skin-mimicking gel. The designed meander-line antenna has a high peak gain of -21 dBi at 2.4 GHz, and its maximum specific absorption rate is compliant with IEEE safety standards.

A study on the development of Railway Signal Network using Dual Master Self-Healing Ring scheme (자기치유링 방식을 이용한 이중 마스터 구조의 철도신호용 광네트워크 개발에 관한 연구)

  • 신석균;이재호;류등렬;김정용;이기서
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.535-542
    • /
    • 2002
  • This paper show communication network scheme problem for the railway is solved which were electrical noise and line break in wayside using rerouting communication line, Considering the availability and the maintainability based on the reliability in design of communication networks. At first, Self-Healing Ring algorithm is suggested in that solution which is satisfied with above requirements. And also, in the advanced type, Dual Master scheme is suggested that the problem which is occurred in line break of both main and sub line at the same time can be solved using DMSHR(Dual Master Self Healing Ring). Therefore total reliability in railway system is going to be advanced using DMSHR scheme.

  • PDF

In-line Dual-Mode DBR Laser Diode for Terahertz Wave Source

  • Chung, Youngchul
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.461-465
    • /
    • 2020
  • A dual-mode laser terahertz source consisting of two in-line distributed Bragg reflector (DBR) laser diodes (LD) is proposed. It is less susceptible to residual reflections from facets than an in-line dual-mode distributed feedback (DFB) LD. The characteristics of the proposed terahertz source are theoretically investigated using a split-step time-domain simulation. It is shown that terahertz waves of frequencies from 385 GHz to 1725 GHz can be generated by appropriate thermal tuning of two DBR LDs. The dual-mode DBR LD terahertz source exhibits good spectral quality for residual facet reflectivity below 0.02, but facet reflectivity of the in-line dual-mode DFB LD terahertz source should be below 0.002 to provide similar spectral quality.

Microstrip dual mode band pass filter using doubly fed line (이중 급전 구조를 갖는 마이크로스트립 이중 모드 대역통과 필터)

  • Kim, Jeong-Pyo;Lee, Min-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.2
    • /
    • pp.128-132
    • /
    • 2015
  • In this paper, a microstrip dual mode band pass filter with doubly fed line is proposed. The proposed filter consists of a corner truncated patch with right crossed slots and doubly fed lines. In general, the resonator with the right crossed slots simultaneously has size reduction and spurious response suppression. In order to improve the rejection performance in out of its higher stop band, the dual mode resonator is excited by using doubly fed line. Details of the filter characteristics are described, and both simulated and measured results of the designed filter are presented.

Dual-Transmission-Line Microstrip Equiripple Lowpass Filter with Sharp Roll-Off

  • Velidi, Vamsi Krishna;Sanyal, Subrata
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.985-988
    • /
    • 2011
  • A novel application of a dual-transmission line is proposed to design a lowpass filter (LPF). The proposed structure uses only transmission line elements to produce an equiripple LPF response with sharp roll-off. Design equations are derived using a lossless transmission line model. Controlling the electrical lengths, three transmission-zeros are realized in the stopband to obtain a sharp roll-off rate and wide stopband bandwidth. A single unit microstrip LPF with a 3-dB cut-off frequency at 1.0 GHz having a roll-off of 135 dB/GHz along with a stopband bandwidth of 69.5% is designed for validation.

Dual-Band Unequal Power Divider based on CRLH Transmission Line (CRLH 전송선로를 기반으로 한 이중대역 비대칭 전력 분배기)

  • Yoo, Jae-Hyun;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.909-915
    • /
    • 2010
  • In this paper, the unequal power divider based on CRLH (Composite Right/Left-Handed) transmission line with dual-band characteristic is proposed. They consist of dual-band branch line hybrid coupler, the connection between input and isolation port of hybrid coupler and ${\lambda}/4$ impedance transformer. When the transmission line between input and isolation port of hybrid coupler is asymmetrical connected, the divider is obtained the output results of the equal phase and unequal power dividing ratio. The simulation results of the divider represent the power ratio of 0 dB ~ 20 dB. To validate a function of divider, the hybrid coupler and transformer with 880 MHz and 1850 MHz is implemented. As a result, the proposed unequal divider obtains the power ratio of 3.2 dB ~ 8.8 dB at 880 MHz and 2.5 dB ~ 14.0 dB at 1850 MHz.

A New Dual Band Branch Line Hybrid Coupler with Arbitrary Power Division Ratio (임의의 분배비를 갖는 새로운 이중 대역 가지 선로 결합기)

  • Kim, Kwi-Soo;Gwon, Chil-Hyeun;Dorjsuren, Baatarkhuu;Lim, Jong-Sik;Ahn, Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.444-449
    • /
    • 2009
  • This paper presents the design of a dual band branch line hybrid coupler(BLHC) with different power division ratios at two bands. In the proposed design, transmission lines of the BLHC are transformed to $\pi$-type equivalent circuits which represent different impedances and $\lambda/4$ electrical length at two frequency bands. In order to verify the proposed method, a dual band coupler with different power division ratios is designed for 0.9 GHz and 2 GHz applications. The desired power division ratios are 1:1 and 1:3 at the two operating frequency bands. The measured results show excellent performance with an insertion loss of less than 0.33 dB, a return loss of less than -18.07 dB, and good isolation characteristics.

Design and Realization. of the Dual-mode Channel Filter and Group-Delay-and-Amplitude Equalizer for the Ka-band Satellite Transponder Subsystem

  • Sungtek Kahng;Uhm, Man-Seok;Lee, Seong-Pal
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.2
    • /
    • pp.140-146
    • /
    • 2003
  • In this paper, the design of a channel filter and its group-delay-and-amplitude equalizer is carried out for the Ka-band satellite transponder subsystem. The 8th order dual-mode filter is employed for high selectivity around the band-edges with an elliptic-integral function response and has an in-line configuration. The 2-pole, reflection-type, group-delay equalizer is designed and manufactured to reduce the group-delay and amplitude variation, which can be large for such a high order filter. It is noted that in both the filter and equalizer, adopting the dual-mode coupling mechanism leads to less mass and volume. Through measurement, the performance of the realized group-delay-equalized filter is shown to meet the equipment requirements and to be appropriate for the satellite input multiplexer.

Implementation of Dual Voltage Level DC Power Line Communication Driver for Multiple Access Serial Bidirectional Communication (양방향 다중직렬통신을 위한 이중전압 직류 전력선 통신 드라이버 구현)

  • Han, Kyong-Ho;Hwang, Ha-Yoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.29-35
    • /
    • 2009
  • This paper handles, implementation of multiple access bidirectional serial communications protocol using DC power lines. The normal voltage of the power communication line maintains 24[V] corresponding to level 1 and the host drops the voltage to 12[V] on sending level 0 signal, also the clients normally keeps the line voltage to 24[V] use pull-down circuit to drop the voltage to 12[V] on sending level 1 signal. Host senses the voltage level of the power communication lines and the hosts switches power source from 24[V] to 12[V]. Experimental circuit is designed with one hosts and four clients and verified the power line voltage switching operation depending on the data signal levels on the power line.

Design and Implementation of the Dual-Mode Type Reliable PLC Modem Chip (듀얼 모드형 고신뢰 PLC 모뎀 칩 설계 및 구현)

  • Lee, Won-Tae;Choi, Sung-Soo;Yun, Sung-Ha;Rhee, Young-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.488-493
    • /
    • 2008
  • This paper represents a dual-mode type transmission technique for a high reliable narrow-band power line communication(PLC) modem, and its design and implementation of a system-on-chip(SoC). The proposed transmission technique is based on a Chirp modulation for the purpose of overcoming time variations of power line channel environments in the narrow-bandwidth of the frequency range of 95-145.5 kHz. The designed modem is fabricated utilizing a mixed 0.18 ${\mu}m$ CMOS technology. Especially, according to the power line channel environments the data transmission rate can be selectively changed into 2.5 kbps and 480 bps. The total hardware complexity of the implemented chip is about 50,000 gates, the power consumption is about 26mW, and the operating frequency is up to 5.12 MHz.