• 제목/요약/키워드: Dual Catalyst

검색결과 27건 처리시간 0.025초

비예열 시동특성을 갖는 이원 촉매 베드 과산화수소 가스발생기 (Hydrogen Peroxide Gas Generator with Dual Catalytic Bed for Non-preheating Start-up)

  • 임하영;안성용;권세진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.163-167
    • /
    • 2007
  • 은 촉매는 과산화수소 촉매분해에 많이 사용되지만, 상온에 시동이 어렵고 높은 온도에 적용하기 곤란하다. 본 논문에서는 은이 가지고 있는 단점을 극복하기 위해 기화기와 고온 촉매 베드로 구성된 이원 촉매 베드에 대한 연구를 수행하였다. 백금을 기화기 촉매로, perovskite 구조를 가지는 촉매를 고온 촉매로 선정하였고, 가스발생기를 이용한 시험을 통해 상온에서 예열이 없이도 시동이 가능함과 고온에서 안정적으로 작동함을 보여주었다.

  • PDF

The effects of Nafion$^{(R)}$ ionomer content in dual catalyst layer on the performances of PEMFC MEAs

  • 김근호;전유택
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.95.2-95.2
    • /
    • 2011
  • In order to achieve high performance and low cost for commercial applications, the development of membrane electrode assemblies (MEA), in which the electrochemical reactions actually occur, must be optimized. Expensive platinum is currently used as an electrochemical catalyst due to its high activity. Although various platinum alloys and non-platinum catalysts are under development, their stabilities and catalytic activities, especially in terms of the oxygen reduction (ORR), render them currently unsuitable for practical use. Therefore, it is important to decrease platinum loading by optimizing the catalysts and electrode microstructure. In this study, we prepared several different MEAs (non-uniform Nafion$^{(R)}$ ionomer loading electrode) which have dual catalyst layers to find the optimal Nafion$^{(R)}$ ionomer distribution in the electrodes. We changed Nafion$^{(R)}$ ionomer content in the layers to find the ideal composition of the binder and Pt/C in the electrode. For MEAs with various ionomer contents in the anodes and cathodes, the electrochemical activity (activation overpotential) and the mass transport properties (concentration overpotential) were analyzed and correlated with the single cell performance. The dual catalyst layers MEA showed higher cell performance than uniformly fabricated MEA, especially at the high current density region.

  • PDF

CNG 대형엔진에서 이중 O2 센서를 활용한 피드백 제어를 통한 삼원촉매 정화효율 향상 (Feedback Control using Dual O2 Sensors for Improving the Conversion Efficiency of a Three-way Catalyst in a Heavy-duty CNG Engine)

  • 윤성준;이준순;박현욱;이용규;김창업;오승묵
    • 한국분무공학회지
    • /
    • 제24권4호
    • /
    • pp.163-170
    • /
    • 2019
  • In this study, feedback logic using dual O2 sensor values were developed to increase the purification capability of a three-way catalyst (TWC) in a compressed natural gas (CNG) engine. A heavy-duty inline 6-cylinder engine was used and the CNG was supplied to the engine through a mixer. This study consists of two main parts, namely, the proportional integral (PI) control with a front O2 sensor and the feedback control with dual O2 sensors. In the PI control experiment, effects of various parameters, such as P gain, I gain, and lean delay, on the TWC capability were identified. Based on the results of the PI control experiment, the feedback logic using dual O2 sensor values were developed. In both cases, the nitrogen oxides (NOX) emissions were nearly zero. However, the carbon monoxide (CO) emissions were reduced significant in the feedback logic with dual O2 sensors than in the PI control with the front O2 sensor.

메탄의 부분산화를 이용한 이중 혼합금속산화물 촉매 반응시스템의 N2O 분해 특성 연구 (N2O Decomposition Characteristics of Dual Bed Mixed Metal Oxide Catalytic System using Partial Oxidation of Methane)

  • 이난영;우제완
    • Korean Chemical Engineering Research
    • /
    • 제46권1호
    • /
    • pp.82-87
    • /
    • 2008
  • Methane의 부분산화에 의하여 일산화탄소를 발생시키고 이를 이용하여 온실가스로 알려져 있는 $N_2O$를 분해시키기 위한 이중 촉매 반응시스템의 반응 특성을 살펴보았다. 일산화탄소를 발생시키기 위한 제1 반응기의 조건은 Co-Rh-Al (1/0.2/1) 촉매를 사용할 때 $500^{\circ}C$의 온도에서 methane과 산소의 비율이 5:1이고 GHSV $8,000h^{-1}$ 일때 가장 적합하였다. 제1 반응기에서 methane을 부분산화시켜 얻은 혼합 가스를 사용하는 이중 반응시스템에서 제2 반응기에 촉매로 Co-Rh-Al(1/0.2/1)과 Co-Rh-Zr-Al(1/0.2/0.3/1)을 사용한 경우 Co-Rh-Al(1/0.2/1) 촉매를 사용한 single bed system 보다 $250^{\circ}C$ 이하의 저온에서 우수한 분해성능을 나타내었다. 두 경우 모두 $250^{\circ}C$ 이상의 온도에서는 $N_2O$가 100% 분해되었다. 또한, 제2 반응기에서 $N_2O$ 분해성능은 NO의 존재 유무에 관계없이 산소의 농도가 증가할수록 감소함을 보여주었다. 다만 NO가 존재할 경우 산소의 농도가 10,000 ppm 이하일 때 100% 분해율을 보이며 그 이상일 경우 급격히 감소하였다.

10 kW 급 암모니아-수소 혼소엔진을 위한 암모니아 개질 촉매 및 반응기 설계에 관한 연구 (A Study on Ammonia Reforming Catalyst and Reactor Design for 10 kW Class Ammonia-Hydrogen Dual-Fuel Engine)

  • 이상호;최영;박철웅;김홍석;이영덕;김영상
    • 한국수소및신에너지학회논문집
    • /
    • 제31권4호
    • /
    • pp.372-379
    • /
    • 2020
  • Ammonia-hydrogen dual-fuel engine is a way to reduce greenhouse gas emission because ammonia and hydrogen are carbon-free fuels. In ammonia-hydrogen dual-fuel engine, hydrogen is supplied to improve the combustion characteristic of ammonia. In this study, an ammonia reformer was developed to supply hydrogen for 10 kW class ammonia-hydrogen dual-fuel engine. Thermodynamic characteristic and catalyst were investigated for ammonia reforming. Heat transfer was important for high ammonia conversion of ammonia reformer. 99% of ammonia conversion was obtained when 10 LPM of ammonia and 610℃ of hot gas were supplied to the ammonia reformer.

PEMFC 시스템의 성능향상을 위한 단위전지 설계에 관한 연구 (A Study on Unit Cell Design for the Performance Enhancement in PEMFC System)

  • 김홍건;김유신;양성모;나석찬
    • 한국공작기계학회논문집
    • /
    • 제14권4호
    • /
    • pp.104-109
    • /
    • 2005
  • The catalyst layer design is one of the most important factors to enhance the performance of PEMFC(Proton Exchange Membrane Fuel Cell) system. The hydrophobic and ion conductive type is studied for the MEA(Membrane Electrolyte Assembly). It is found that those have some limitations for performance enhancement when they are used separately. Thus, the dual catalyst type, a mixed model, is developed for the better MEA performance. In the meantime, the design of flow field plate is subsequently carried out in order to give more enhanced output during its operation. The conductivity of flow field plate showed better performance in the case of manufactured by the more compressed process(20MPa) than by the less compressed process(10MPa). The micro-structure of the flow field plate is examined in details using SEM(Scanning Electron Microscope) to analyse the effects on the different compression processes.

이중관 배기메니폴드의 HC저감효과 및 열특성에 관한 연구 (A Study on the Reduction of HC and Heat Characteristics of the Dual Pipe Exhaust Manifold)

  • 박경석;허형석
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.103-111
    • /
    • 2001
  • During cold-start period, the reduction of exhaust emissions is a challenging task. To decrease harmful gaseous substances such as HC, it is necessary to realize a fast catalyst warm-up. In this study, the performance of dual pipe exhaust system have been carried out through different test mode. From measurement of gas temperature and HC concentration, the following conclusions were derived ; 1) Compared with single pipe, dual pipe exhaust system remarkably increase temperature of exhaust gas going through M.C.C(Main Catalytic Converter). 2) W.C.C.(Warm-up Catalytic Converter) also decreases HC emission. To reduce HC emission, it is helpful to use W.C.C. as well as dual pipe exhaust system. 3) Using finite element method, it is shown that inner parts have much higher distribution of temperature than outer parts.

  • PDF

천연가스자동차 촉매의 온도분포 및 배기정화 특성 (Temperature and exhaust gas conversion efficiency of catalytic converters for natural gas vehicles)

  • 최병철;김영길
    • 대한기계학회논문집B
    • /
    • 제22권2호
    • /
    • pp.205-212
    • /
    • 1998
  • Experiments were conducted to investigate the temperature profile and the emissions conversion efficiency of catalytic converters for natural gas vehicles. Two types of the catalyst structure and several transient engine operating conditions were used. The dual-bed catalyst effectively reduced the emissions in a transient period due to the low heat capacity of the front bed. The lanthanoid additives were effective in improving catalyst durability. When the natural gas fueled engine were operated outside of a very narrow window of excess air ratio (from 0.993 to 1.004), the HC and NOx conversion efficiency dropped off. The drop-off were especially fast on the lean side of the window.

Development of Micro-Tubular Perovskite Cathode Catalyst with Bi-Functionality on ORR/OER for Metal-Air Battery Applications

  • Jeon, Yukwon;Kwon, Ohchan;Ji, Yunseong;Jeon, Ok Sung;Lee, Chanmin;Shul, Yong-Gun
    • Korean Chemical Engineering Research
    • /
    • 제57권3호
    • /
    • pp.425-431
    • /
    • 2019
  • As rechargeable metal-air batteries will be ideal energy storage devices in the future, an active cathode electrocatalyst is required with bi-functionality on both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during discharge and charge, respectively. Here, a class of perovskite cathode catalyst with a micro-tubular structure has been developed by controlling bi-functionality from different Ru and Ni dopant ratios. A micro-tubular structure is achieved by the activated carbon fiber (ACF) templating method, which provides uniform size and shape. At the perovskite formula of $LaCrO_3$, the dual dopant system is successfully synthesized with a perfect incorporation into the single perovskite structure. The chemical oxidation states for each Ni and Ru also confirm the partial substitution to B-site of Cr without any changes in the major perovskite structure. From the electrochemical measurements, the micro-tubular feature reveals much more efficient catalytic activity on ORR and OER, comparing to the grain catalyst with same perovskite composition. By changing the Ru and Ni ratio, the $LaCr_{0.8}Ru_{0.1}Ni_{0.1}O_3$ micro-tubular catalyst exhibits great bi-functionality, especially on ORR, with low metal loading, which is comparable to the commercial catalyst of Pt and Ir. This advanced catalytic property on the micro-tubular structure and Ru/Ni synergy effect at the perovskite material may provide a new direction for the next-generation cathode catalyst in metal-air battery system.

CRDI시스템을 갖는 천연가스/디젤 혼소차량의 개발에 대한 연구 (Research of Natural Gas/Diesel Dual Fuel Vehicle)

  • 이상민;임옥택
    • 한국자동차공학회논문집
    • /
    • 제20권5호
    • /
    • pp.13-18
    • /
    • 2012
  • This research is about the exhaust gas and driving performance test which are for CNG-Diesel dual fuel engine. The CNG-Diesel dual fuel engine converted from 2500cc diesel has two steps of injection systems; small amount of diesel is injected to mixture CNG in cylinder to ignite before CNG is injected into each intake manifold to form mixture. The amounts of output power and emission in duel fuel consumption were measured by engine dynamometer and exhaust gas analyzer. Over 90% of diesel consumption reduction, similar driving performance to current diesel engine and reduced emission on $CO_2$ and PM, respectively, were indicated through the measurements. The two steps of system were applied to vehicle to investigate exhaust gas characteristics and driving performance via NEDC mode and real driving test. Additional oxidation catalyst was applied to reduce emission on the test vehicle and the NEDC mode test showed the reduction of Co, $CO_2$, Pm and THC.