• Title/Summary/Keyword: Drying Furnace

Search Result 94, Processing Time 0.025 seconds

An Experimental Study on the Non-Structural Lean Concrete's Dry Shrinkage with industrial by-product (산업부산물을 활용한 비구조용 콘크리트의 건조수축 특성에 관한 실험적 연구)

  • Hwang, Moo Yeon;Yang, Wan Hee;Park, Dong Cheol;Kim, Woo Jea
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.216-217
    • /
    • 2017
  • Slag cement or ternary blended cement is mainly used for non-structural lean concrete for the purpose of foundation work or protection of the waterproof layer on the roof of buildings. However, such non-structural lean concrete has a lot of drying shrinkage cracks, which makes it difficult to maintain the quality of the structure. Therefore, in this study, the compressive strength and the drying shrinkage of ternary blended cement(blended of portland cement, blast furnace slag, fly ash from combined heat and power Plant) for non-structural lean concrete were examined. As a result, it was confirmed that this non-structural lean concrete reduced drying shrinkage compared to the conventional ternary blended cement using fly ash from power plant.

  • PDF

A Study on the Compressive Strength and Drying Shrinkage of Concrete Depending on Mineral Admixture Kinds (혼화재 치환 콘크리트의 압축강도 및 건조수축에 관한 연구)

  • Joo Eun-Hi;Shon Myoung-Soo;Jeon Hyun-Kyu;Cha Cheon-Soo;Kim Seong-Soo;Han Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.253-256
    • /
    • 2005
  • This paper is to investigate the mixture proportion, compressive strength and drying. shrinkage of concrete depending on mineral admixtures such as fly ash (FA), blast furnace slag (BS) and cement kiln dust (CKD) under various contents of admixtures. The use of CKD had little effect on strength development at 3 days, while the use of FA and BS lead to similar compressive strength compared with that of control concrete. Concrete with CKD exhibited a reduction of compressive strength at 91 days, meanwhile concrete with FA and BS had a increase compared with that of control concrete. Drying shrinkage of concrete depending on CKD and BS increase compared with that of control concrete about $10\∼20\%$, while the use of FA exhibited reduce compared with that of control concrete about $10\∼15\%$.

  • PDF

Temperature Control of Electric Furnaces using Adaptive Time Optimal Control (적응최적시간제어를 사용한 전기로의 온도제어)

  • Jeon, Bong-Keun;Song, Chang-Seop;Keum, Young-Tag
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.120-127
    • /
    • 2009
  • An electric furnace, inside which desired temperatures are kept constant by generating heat, is known to be a difficult system to control and model exactly because system parameters and response delay time vary as the temperature and position are changed. In this study the heating system of ceramic drying furnaces with time-varying parameters is mathematically modeled as a second order system and control parameters are estimated by using a RIV (Recursive Instrumental-Variable) method. A modified bang-bang control with magnitude tuning is proposed in the time optimal temperature control of ceramic drying electric furnaces and its performance is experimentally verified. It is proven that temperature tracking of adaptive time optimal control using a second order model is more stable than the GPCEW (Generalized Predictive Control with Exponential Weight) and rapidly settles down by pre-estimation of the system parameters.

Setting Time, Compressive Strength and Drying Shrinkage of Mortar with Alpha-Calcium Sulfate Hemihydrate (α형 반수석고를 치환한 모르타르의 응결 및 압축강도, 건조수축 특성)

  • Lee, Kye-Hyouk;Kim, Gyu-Yong;Lee, Bo-Kyeong;Shin, Kyoung-Su;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.117-124
    • /
    • 2017
  • In this study, to evaluate the setting time, compressive strength and drying shrinkage of ordinary Portland cement and Portland blast-furnace slag cement mortar with 0, 10, 20, 30 wt.% alpha-calcium sulfate hemihydrate. As a results, as the replacement ratio of alpha-calcium sulfate hemihydrate increased, the initial setting time of ordinary Portland cement and Portland blast-furnace slag cement mortar was faster. In addition, the compressive strength decreased with increasing replacement ratio of alpha-calcium sulfate hemihydrate in both ordinary Portland cement mortar and Portland blast-furnace slag cement mortar. The strength development of Portland blast-furnace slag cement mortar with alpha-calcium sulfate hemihydrate was effective than that of ordinary Portland cement mortar. On the other hand, in the case of the mortar with alpha-calcium sulfate hemihydrate, it was confirmed that shrinkage deformation was reduced at the early age by growth pressure of needle-shaped ettringite crystals produced by incorporation of alpha-calcium sulfate hemihydrate. However, the effect of inhibiting shrinkage deformation of mortar with alpha-calcium sulfate hemihydrate was not significant as the age passed. Therefore, it is considered that the alpha-calcium sulfate hemihydrate is useful as a construction material.

Shrinkage Characteristics of 50MPa High-strength Concrete with Compositions of Cementitious Materials (결합재 구성에 따른 50MPa급 고강도 콘크리트의 수축 변형 특성)

  • Jung, Hyung-Chul;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.93-100
    • /
    • 2009
  • This study forms part of a research project that was carried out on the development and application of high-strength concrete for large underground spaces. In order to develop 50MPa high-strength concrete, eight optimal mixtures with different portions of fly ash and ground granulated blast furnace slag were selected. For assessments of shrinkage characteristics, free shrinkage tests with prismatic specimens and shrinkage crack tests were performed. The compressive strength was more than 30MPa at 7days, and stable design strength was acquired at 28days. High-strength concrete containing blast furnace slag shows large autogenous shrinkage, while large shrinkage deformations and cracks will occur when mixtures are replaced with large volumes of cementitious materials. Hence, for these high-strength concrete mixtures, the curing conditions of initial ages that affect the reaction of hydration and drying effects need to be checked.

Engineering Characteristics Analysis of High Strength Concrete Followed in replacement ratio increase in Blast Furnace Slag (고로슬래그 미분말의 치환율 증가에 따른 고강도 콘크리트의 공학적 특성 분석)

  • Han, Cheon-Goo;Kim, Seoung Hwan;Son, Ho-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.62-68
    • /
    • 2009
  • This research examined engineering properties of high performance concrete, when substitution rate of BS increases. A summary of the test result is as follows. The fluidity of unset concrete increases as the substitution rate of BS increases. The amount of air is reduced more or less, but it seems that enough amount of air can be secured by using more air-entraining agent. Setting time is dramatically delayed as the substitution rate of BS increases. The compressive strength of hardening concrete was weaker than OPC before 28 days passes, due to latent hydraulic property of BS. However, after 28 days, it shows same or better property, which is exceptional for the practical uses of hyper strength concrete. Changes in drying shrinkage rate is quite much, because when hydration happens, the amount of free water in concrete increased as W/B gets larger. The amount of drying shrinkage increases as BS substitution rate increases, but every composition shows less than $-500{\times}10^{-6}$, which is relatively fine.

  • PDF

Nanoporous Organo-functional Silica Synthesis Based on a Purely Inorganic Precursor

  • Oh, Chang-Sup;Koo, Kyung-Wan;Han, Chang-Suk;Kim, Jang-Woo;Kim, Heon-Chang;Lee, Yong-Sang;Choi, Young-Tai;Kim, Yong-Ha
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.516-521
    • /
    • 2009
  • In this study we report a rapid synthesis of nanoporous organo-functional silica (OFS) with unimodal and bimodal pore structures encompassing pores ranging from meso-to macroscale. The problems of tediousness and high production cost in the conventional syntheses are overcome by co-condensation of an inexpensive inorganic precursor, sodium silicate with an organosilane containing trimethyl groups. The insitu covalent anchoring of the non-polar trimethyl groups to the inner pore walls prohibits irreversible shrinkage of the wet-gel during microwave drying at ambient pressure and thus larger size pores (from ca. 20 to ca. 100 nm) can be retained in the dried silica. The drying process of the silylated wet-gels at an ambient pressure can be greatly accelerated upon microwave exposure instead of drying in an oven or furnace. Using this approach, anoporous and superhydrophobic silicas showing a wide variation in texture and morphology can be readily synthesized in roughly two hours. The effects of various sol-gel parameters solely on the textural properties of the organo-functional silica (OFS) have been investigated and discussed.

Evaluation of Stability of CLC through Strength and Reduction of Drying Shrinkage (강도 및 건조수축 저감을 통한 CLC의 안정성 평가)

  • Lee, Chang-Woo;Hwang, Woo-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.205-206
    • /
    • 2022
  • This study intends to conduct tests on subsidence and drying shrinkage by mixing CaO-CSA expansion materials to ensure the stability of CLC, and to understand its properties. Based on CLC of 0.6, the replacement ratio of CaO-CSA expansion material was conducted at five levels compared to blast furnace slag, and the results are as follows. The replacement of CaO-CSA expansion material at an appropriate level produces ethringhite and potassium hydroxide, and it is believed that the internal voids of CLC and the Tobelmorite interlayer structure are charged to increase the structural stability, leading to an increase in compressive strength and a decrease in the drying shrinkage. However, it is judged that tissue relaxation due to excessive substances in the high replacement ratio affects the stability of CLC. In the future, we will conduct additional experiments on density, absorption rate, flow test, and settlement, and evaluate and analyze the stability of CLC by selecting the optimal replacement ratio of CaO-CSA expansion materials.

  • PDF

A Study on the Characteristics of Electric Arc Furnace Slag Concrete According to the Changing of the Pretreatment Method (전처리방법(前處理方法)의 변화(變化)에 따라 제작(製作)된 전기로(電氣爐)슬래그콘크리트의 특성(特性) 연구(硏究))

  • Kim, Nam-Wook;Jeon, Jun-Hong;Bae, Ju-Seong
    • Resources Recycling
    • /
    • v.18 no.4
    • /
    • pp.52-61
    • /
    • 2009
  • Purpose of this research is deducing optimum pretreatment method of electric arc furnace slag from comparing and investigating the properties of electric arc furnace slag and electric arc furnace slag concrete by existing pretreatment method and surface pretreatment method being used by this research. Besides, as the surface pretreatment method, the method of naturally drying for 6 hours after impregnating with an inorganic type silica solution for 1 day was used. From the results, comparing the hot water treatment method, surface treatment method being used by this research is more effective. Therefore, it is judged that surface treatment method is more effective in the decrease of expansibility of electric arc furnace slag and practical use.

The Fundamental Properties of High Fluidity Mortar with Activated Ternary Blended Slag Cement (활성화된 삼성분계 고유동 모르타르의 기초특성)

  • Bae, Ju-Ryong;Kim, Tae-Wan;Kim, In-Tae;Kim, Hyoung-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.74-82
    • /
    • 2017
  • This research presents the results of the strength and drying shrinkage properties to study the effect of ground granulated blast furnace slag(GGBFS), fly ash(FA) and calcium sulfoaluminate(CSA) for activated ternary blended slag cement. The activated ternary blended cement(ATBC) mortar were prepared having a constant water-cementitious materials ratios of 0.4. The GGBFS contents ratios of 100%, 80%, 70% and 60%, FA replacement ratios of 10%, 20%, 30% and 40%, CSA ratios of 0%, 10%, 20% and 30% were designed. The superplasticizer of polycarboxylate type were used. The activator was used of 10% sodium hydroxide(NaOH) + 10% sodium silicate($Na_2SiO_3$) by weight of binder. Test were conducted for mini slump, setting time, V-funnel, water absorption, compressive strength and drying shrinkage. According to the experimental results, the contents of superplasticizer, V-funnel and compressive strength increases with an increase in CSA contents for all mixtures. Moreover, the setting time, water absorption ratios and drying shrinkage ratio decrease with and increase in CSA. One of the major reason for the increase of strength and decrease of drying shrinkage is the accelerated reactivity of GGBFS with alkali activator and CSA. The CSA contents is the main parameter to explain the strength development and decreased drying shrinkage in the ATBC.