• Title/Summary/Keyword: Dry storage

Search Result 659, Processing Time 0.032 seconds

A STUDY ON THE INITIAL CHARACTERISTICS OF DOMESTIC SPENT NUCLEAR FUELS FOR LONG TERM DRY STORAGE

  • Kim, Juseong;Yoon, Hakkyu;Kook, Donghak;Kim, Yongsoo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.377-384
    • /
    • 2013
  • During the last three decades, South Korean nuclear power plants have discharged about 5,950 tons of spent fuel and the maximum burn-up reached 55 GWd/MTU in 2002. This study was performed to support the development of Korean dry spent fuel storage alternatives. First, we chose V5H-$17{\times}17$ and KSFA-$16{\times}16$ as representative domestic spent fuels, considering current accumulation and the future generation of the spent fuels. Examination reveals that their average burn-ups have already increased from 33 to 51 GWd/MTU and from 34.8 to 48.5 GWd/MTU, respectively. Evaluation of the fuel characteristics shows that at the average burn-up of 42 GWd/MTU, the oxide thickness, hydrogen content, and hoop stress ranged from $30{\sim}60{\mu}m$, 250 ~ 500 ppm, and 50 ~ 75 MPa, respectively. But when burn-up exceeds 55 GWd/MTU, those characteristics can increase up to 100 ${\mu}m$, 800 ppm, and 120 MPa, respectively, depending on the power history. These results demonstrate that most Korean spent nuclear fuels are expected to remain within safe bounds during long-term dry storage, however, the excessive hoop stress and hydrogen concentration may trigger the degradation of the spent fuel integrity early during the long-term dry storage in the case of high burn-up spent fuels exceeding 45 GWd/MTU.

Analysis methodology of local damage to dry storage facility structure subjected to aircraft engine crash

  • Almomani, Belal;Kim, Tae-Yong;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1394-1405
    • /
    • 2022
  • The importance of ensuring the inherent safety and security has been more emphasized in recent years to demonstrate the integrity of nuclear facilities under external human-induced events (e.g. aircraft crashes). This work suggests a simulation methodology to effectively evaluate the impact of a commercial aircraft engine onto a dry storage facility. A full-scale engine model was developed and verified by Riera force-time history analysis. A reinforced concrete (RC) structure of a dry storage facility was also developed and material behavior of concrete was incorporated using three constitutive models namely: Continuous Surface Cap, Winfrith, and Karagozian & Case for comparison. Strain-based erosion limits for concrete were suitably defined and the local responses were then compared and analyzed with empirical formulas according to variations in impact velocity. The proposed methodology reasonably predicted such local damage modes of RC structure from the engine missile, and the analysis results agreed well with the calculations of empirical formulas. This research is expected to be helpful in reviewing the dry storage facility design and in the probabilistic risk assessment considering diverse impact scenarios.

Improvement of delayed hydride cracking assessment of PWR spent fuel during dry storage

  • Hong, Jong-Dae;Yang, Yong-Sik;Kook, Donghak
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.614-620
    • /
    • 2020
  • In a previous study, delayed hydride cracking (DHC) assessment of pressurized water reactor (PWR) spent fuel during dry storage using the threshold stress intensity factor (KIH) was performed. However, there were a few limitations in the analysis of the cladding properties, such as oxide thickness and mechanical properties. In this study, those models were modified to include test data for irradiated materials, and the cladding creep model was introduced to improve the reliability of the DHC assessment. In this study, DHC susceptibility of PWR spent fuel during dry storage depending on the axial elevation was evaluated with the improved assessment methodology. In addition, the sensitivity of affecting parameters such as fuel burnup, hydride thickness, and crack aspect ratio are presented.

Behaviors of Nuclear Spent Fuel Dry Storage System for Flask Dropping and Truck Collision (플라스크 낙하 및 이송차량 충돌에 대한 사용후 핵연료 건식저장시스템의 거동)

  • Song, Hyung-Soo;Min, Chang-Shik;Yoon, Dong-Yong;Chung, Hong-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.95-102
    • /
    • 2005
  • Delaying and objection for the construction of storage spent-fuel disposal has prompted to consider expanding on-site storage of spent reactor fuel since it can eliminate the need for costly and difficult shipping and control of the spent fuel completely under the direction of the owner-utility. The dry storage unit developed in Canada can accommodate Korea heavy water reactor fuel elements and become a candidate for the Korean market. In this paper, finite element analysis were carried out in order to investigate the structural behavior of the nuclear spent fuel dry storage system, which is subjected to impact loads such as collision of a truck load and dropping of flask under the irregular operation.

A Development of the Grain Moisture Dry System Using Water-rate Compensator and PID Controller (함수율 보정기와 PID제어기를 이용한 곡물 수분 건조 시스템 개발)

  • Lee, Chang-Kuen;Shim, Woo-Chul;Park, Sung-Jin;Hong, Yeon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.315-318
    • /
    • 2001
  • In this paper recommends the development of automated silo dry & storage system. Most of existing round shaped iron silo arc used for only storage after dry and have many problems in storing. So We have developed an automated dry system which used the previously equipped silo and enables it to be used for storage after dry. The system features high frequency-resistance water sensor in Hopper scale that is in general use within the country its silo that is manufactured by the nerve DSP(TMS320C32) system water compensator and visualization that is finally realized with a personal computer.

  • PDF

Dry storage of spent nuclear fuel and high active waste in Germany-Current situation and technical aspects on inventories integrity for a prolonged storage time

  • Spykman, Gerold
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.313-317
    • /
    • 2018
  • Licenses for the storage of spent nuclear fuel (SNF) and vitrified highly active waste in casks under dry conditions are limited to 40 years and have to be renewed for prolonged storage periods. If such a license renewal has to be expected since as in accordance with the new site selection procedure a final repository for spent fuel in Germany will not be available before the year 2050. For transport and possible unloading and loading in new casks for final storage, the integrity and the maintenance of the geometry of the cask's inventory is essential because the SNF rod cladding and the cladding of the vitrified highly active waste are stipulated as a barrier in the storage concept. For SNF, the cladding integrity is ensured currently by limiting the hoop stress and hoop strain as well as the maximum temperature to certain values for a 40-year storage period. For a prolonged storage period, other cladding degradation mechanisms such as inner and outer oxide layer formation, hydrogen pick up, irradiation damages in cladding material crystal structure, helium production from alpha decay, and long-term fission gas release may become leading effects driving degradation mechanisms that have to be discussed.

Changes in Moisture Content and Quality of Oriental Hybrid Lily (Lilium oriental cv. Siberia) Cut Flowers during Storage at Cold and Dry Condition and Subsequent Exposure to Ambient Temperature (오리엔탈 나리 '시베리아' 절화의 포장내 건식저장 기간별 수분함량과 품질 변화)

  • Lee, Jung-Soo;Rhee, JuHee;Kang, Yun-Im;Choi, Ji Weon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.1
    • /
    • pp.27-36
    • /
    • 2017
  • In order to determine the relationship between water content and flower qualities of oriental hybrid lily cv. 'Siberia' cut flower, flowers were subjected to dry and cold storage at $5^{\circ}C$ for 3, 6, and 12 days and subsequently exposed to ambient temperature ($26^{\circ}C$) in bottles with water for up to 16 days. Flowers stored at $22^{\circ}C$ in dry condition for 3 days were used as the control. Changes in fresh weight, moisture content, water balance, flowering stages, osmolality and vase life of cut flowers were observed. Flowers treated with cold and dry storage had higher moisture content compared to control sample. However, this trend was evident only for 3-day cold and dry stored sample during the whole storage period. The fresh weight of cut flowers increased gradually when the samples were transferred to ambient temperature in water bottles and then declined steadily before reaching the peak in between 6-8 days of vase life. However, the changes of fresh weight of control sample were substantially faster than samples pre-treated with cold and dry storage. This was also correlated with the water balance of cut flower as it reached the minus (-) value in 6-8 days of vase life at ambient temperature. Cut lily flowers showed high osmolality values corresponding with the duration of dry storage regardless of low or higher temperature. However, osmolality had no effect on vase life since flower stem absorbed water rapidly at the end of dry storage period. Our vase life results suggest that cold and dry storage of lily cut flowers for a certain period could ensure longer vase life at ambient temperature. It was observed that prolonging the storage period at cold and dry condition for more than a week significantly increased bud abortion, reduced longevity of flowers and reduced the vase life of cut flowers. On the other hand, the shorter cold and dry storage treatment delayed the bud opening and senescence of the flowers, thus, slowering the normal maturation and aging. Results indicated that dry and cold storage at $5^{\circ}C$ for 3 days was effective in maintaining and preserving overall quality and vase life at ambient condition of oriental hybrid lily cut flowers.

Analysis and Design of Nuclear Spent Fuel Dry Storage System under Irregular Operation (사용후 핵연료 건식저장장치의 비정상 운영조건의 해석과 설계)

  • Song, Hyung-Soo;Min, Chang-Shik;Yoon, Dong-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.381-384
    • /
    • 2004
  • Delaying and objection for the construction of storage spent-fuel disposal has prompted to consider expanding on-site storage of spent reactor fuel since it can eliminate the need for costly and difficult shipping and control of the spent fuel completely under the direction of the owner-utility. The dry storage unit developed in Canada can accommodate Korea heavy water reactor fuel elements and become a candidate for the Korean market. In this paper, finite element analyses were carried out in order to investigate the structural behavior of the nuclear spent fuel dry storage system, which is subjected to impact loads such as collision of a truck load and dropping of flask under the irregular operation.

  • PDF

Effects of Antioxidant Activity and Changes in Vitamin C during Storage of Lycii folium Extracts Prepared by Different Cooking Methods (조리방법을 달리한 구기엽의 저장기간별 항산화 효과 및 비타민 C 함량의 변화)

  • Kim, Tae-Su;Park, Won-Jeong;Kang, Myung-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.12
    • /
    • pp.1578-1582
    • /
    • 2007
  • Contents in polyphenol and vitamin C and their antioxidant activities during storage of Lycii folium prepared by different treatment methods were investigated. The antioxidant activity of extracts prepared from 80% MeOH was evaluated using DPPH radical scavenging and SOD-liked activities. Total phenolic acid contents were 1.34 mg/mL when dry, but extracts during 15-day storage after NaCl 0% treatment decreased. DPPH radical scavenging activity of extracts was 65.48% when dry and decreased during 15-day storage after dry and NaCl 0% treatment. SOD-liked activity was 98.63% in NaCl 0% during 15-day storage after dry. Contents of vitamin C decreased during 15-day storage after dry and NaCl 0% treatment. Consequently, our results indicate that Lycii folium prepared from dry treatment could be a promising biomaterial for the production of functional food for total phenolic acid and vitamin C.

Review of Research on Chloride-Induced Stress Corrosion Cracking of Dry Storage Canisters in the United States (미국의 건식저장 캐니스터에서의 CISCC 연구에 대한 검토)

  • Park, Hyoung-Gyu;Park, Kwang-Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.455-472
    • /
    • 2018
  • It is important to study how to manage dry storage casks of spent nuclear fuels (SNF), because wet storage spaces for SNF will shortly be at full capacity in the Republic of Korea. The US has operated a dry storage cask system for several decades, and has carried out significant studies into how to successfully manage dry storage cask for SNF. This type of expertise and experience is currently lacking in the Republic of Korea. The degradation of dry casks is an important issue that must be considered. In particular, chloride-induced stress corrosion cracking (CISCC) is known to lead to the release of radioisotopes from canisters. The U.S. Department of Energy, U.S. Nuclear Regulatory Commission, and the Electric Power Research Institute have undertaken research into the CISCC mechanism. In addition, Sandia National Laboratories (SNL) has extensively researched CISCC and how to manage it in dry storage canisters. In this review paper, the probabilistic model proposed by the SNL is analyzed and, based on this model, US-based CISCC research is reviewed in detail. This paper will inform the management of dry cask storage of SNF from light water reactors in austenite stainless steel canisters in the Republic of Korea.