• Title/Summary/Keyword: Dry condition

Search Result 1,997, Processing Time 0.03 seconds

Growth Response and Changes of Nitrate and Sucrose Content in Tomato under Salt Stress Condition (염스트레스에 의한 토마토 생장반응과 식물체내 Nitrate 및 Sucrose 변화)

  • Lee, Ju-Young;Jang, Byoung-Choon;Lee, Su-Yeon;Park, Jae-Hong;Choi, Geun-Hyoung;Kim, Sam-Cwaun;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.3
    • /
    • pp.164-169
    • /
    • 2008
  • This experiment was carried out to find the growth response and changes of nitrate and soluble sugar content in tomato leaves with salt stress. Tomato (Solanum lycopericum) seedlings were grown under different electrical conductivity (EC) levels adjusted with $CaCl_2$ as 1, 2, and $6dS\;m^{-1}$. The growth response and contents of nitrate and soluble sugar in tomato plants were examined at 7 and 14 days after salt treatment. Leaf area and dry weight ratio of shoot to root of tomato plants were decreased as EC level increased. Photosynthetic rate of leaves was reduced under high EC level due to the stomatal closure and the reduction of transpiration rate. The soluble sugar and starch content were lower in the tomato leaves grown under high EC level. Total nitrogen and nitrate contents were decreased in high EC level, whereas the ammonium content was increased. High-salt stress induced the accumulation of salt crystal in mesophyll cells of tomato leaf.

In vitro Evaluation of the Mechanism of Antagonism and Phosphate Solubilization by the Insect Gut Bacteria Pseudomonas sp. PRGB06 that Exhibits Plant Growth Promotion and Bio-Fertilizing Traits (배추좀나방 내장에서 분리한 식물생장촉진미생물 Pseudomonas sp. PRGB06의 길항기작과 인산가용화의 기내 평가)

  • Kim, Kyoung-A;Indiragandhi, P.;Anandham, R.;Palaniappan, P.;Trivedi, P.;Madhaiyan, M.;Han, Gwang-Hyun;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.1
    • /
    • pp.18-25
    • /
    • 2008
  • Pseudomonas sp. PRGB06, a bacterial strain isolated from diamondback moth (Plutella xylostella) gut, was examined for its plant growth promotion and biofertilizing traits. The bacteria growth was observed under various conditions of carbon sources, temperature, pH and salt concentrations. In addition, the mechanisms of antagonism and phosphate solubilization were investigated. The bacterial strain PRGB06, grew well using most of the tested carbon sources. The best growth was observed at $30^{\circ}C$ and pH 7. The inhibition of the pathogenic fungi was likely due to the volatile antifungal metabolite and ammonia gas produced by the bacteria. A significant positive relationship was found between the phosphate solubilization and acid production. When inoculated with PRGB06 in vitro and in gnotobiotic condition, red pepper and maize showed increase in root length, seedling vigor and dry bio-mass.

Studies on Manufacturing Wood Particle-Polypropylene Fiber Composite Board

  • Lee, Chan-Ho;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.47-58
    • /
    • 2001
  • For finding both ways of recycling the wood and plastic wastes and solving the problem of free formaldehyde gas emission through manufacturing wood particle-polypropylene fiber composite board without addition of formaldehyde-based thermosetting resin adhesive, control particleboards and nonwoven web composite boards from wood particle and polypropylene fiber formulation of 50 : 50, 60 : 40, and 70 : 30 were manufactured at density levels of 0.5, 0.6, 0.7, and 0.8 g/$cm^3$, and were tested both in the physical and mechanical properties according to ASTM D 1037-93. In the physical properties, control particleboard had significantly higher moisture content than composite board. In composite board, moisture content decreased with the increase of target density only in the board with higher content of polypropylene fiber and also appeared to increase with the increase of wood particle content at a given target density. Control particleboard showed significantly greater water absorption than composite board and its water absorption decreased with the increase of target density. In composite board, water absorption decreased with the increase of target density at a given formulation but increased with the increase of wood particle content at a given target density. After 2 and 24 hours immersion, control particleboard was significantly higher in thickness swelling than composite board and its thickness swelling increased with the increase of target density. In composite board, thickness swelling did not vary significantly with the target density at a given formulation but its thickness swelling increased as wood particle content increased at a given target density. Static bending MOR and MOE under dry and wet conditions increased with the increase of target density at a given formulation of wood particle and polypropylene fiber. Especially, the MOR and MOE under wet condition were considerably larger in composite board than in control particleboard. In general, composite board showed superior bending strength properties to control particleboard, And the composite board made from wood particle and polypropylene fiber formulation of 50 : 50 at target density of 0.8 g/$cm^3$ exhibited the greatest bending strength properties. Though problems in uniform mixing and strong binding of wood particle with polypropylene fiber are unavoidable due to their extremely different shape and polarity, wood particle-polypropylene fiber composite boards with higher performance, as a potential substitute for the commercial particleboards, could be made just by controlling processing variables.

  • PDF

Comparative Study on The Composition of Essential Oil by Supercritical Carbon Dioxide Extraction and Hydro-distillation from Chamaecyparis obtusa Leaves (편백 잎에서 추출한 정유와 초임계 이산화탄소 추출물의 성분 비교분석)

  • Kim, Jae-Woo;Choi, Won-Sil;Lee, Sung-Suk;Park, Mi-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.494-503
    • /
    • 2015
  • This study was focused on the comparison of the variations in the yield and chemical composition of Chamaecyparis obtusa leaf oil obtained under different pressure conditions of the supercritical carbon dioxide extraction (SCE), and by hydro-distillation. SCE was carried out varying the pressure in the range of 100~400 bar at $40^{\circ}C$. The chemical composition of C. obtusa leaf oils was determined by gas chromatography-mass spectroscopy (GC-MS) analysis. The maximum yield of 4.4% (relative to the initial mass of oven dry mass) was obtained in the extraction under 300 bar pressure, which was higher than that of the hydro-distillation method (1.9%). The contents of sesquiterpenes in the extracts obtained by the SCE were higher than those of the essential oils of C. obtusa by the hydro-distillation. The sesquiterpenes in the SCE extracts made up approximately 39%~46% of the total, followed by monoterpenes, diterpene, and lignan. The contents of each constituent in the supercritical carbon dioxide extracts were varied on the extraction pressure. Therefore, these results showed that the extraction condition of SCE had significant effect on the yield of C. obtusa oils and its chemical composition.

A Study on the $SO_2/CO_2/N_2$ Mixed Gas Separation Using Polyetherimide/PEBAX/PEG Composite Hollow Fiber Membrane (Polyetherimide/PEBAX/PEG 복합 중공사막을 이용한 $SO_2/CO_2/N_2$ 혼합기체 분리에 관한 연구)

  • Hyung, Chan-Heui;Park, Chun-Dong;Kim, Kee-Hong;Rhim, Ji-Won;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.404-414
    • /
    • 2012
  • In order to investigate $SO_2$ removal, PEI hollow fiber membranes were produced by a dry-wet phase inversion method. The membrane support layer on surface was coated with PEBAX1657$^{(R)}$ and PEG blending materials. Modules were prepared for the single gas permeation characteristics of composite membrane according to temperature and pressure. As a result, $SO_2$ permeance and $SO_2/N_2$ selectivity were 220~1220 GPU and 100~506 through operating condition, respectively. Moreover, $SO_2/CO_2/N_2$ mixture gas was used to compare the performance of separation properties according to temperature, pressure and retentate flow rate difference. $SO_2$ removal efficiency was increased with pressure and temperature.

Comparison of Tillage and Loads Characteristics of Three Types of Rotavators: Rotary-type, Crank-type, and Plow-type

  • Kim, Myoung-Ho;Nam, Ju-Seok;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.73-80
    • /
    • 2013
  • Purpose: This study was conducted to compare tillage and loads characteristics of three types of rotavators in farmland working condition of Korea. Methods: Tillage operations using three types of rotavators, i.e. rotary-type, crank-type and plow-type, were carried out in a dry field of Korea. The same prime mover tractor was used for driving three types of rotavators, and under several operational conditions, tillage characteristics such as actual working speed, rotavating depth, rotavating width, actual field capacity, flow of tilled soil, soil inversion ratio, and pulverizing ratio were measured. In addition, loads characteristics like torque and required power of Power Take-Off (PTO) shaft were calculated. Results: The average rotavating depth was smaller than the nominal value for all rotavators, and the difference was the greatest in the plow-type rotavator. Nevertheless, the plow-type rotavator showed the largest rotavating depth. The rotavating width was the same as the nominal value of all rotavators. The flow of tilled soil at the same operational conditions was the greatest in the plow-type rotavator and was the smallest in the rotary-type rotavator. In the most commonly used gear conditions of L2 and L3, the average soil pulverizing ratio was the greatest in the rotary-type rotavator, and followed by crank-type and plow-type rotavators in order. In the gear L2 and L3, the plow-type rotavator also had the lowest average soil inversion ratio while the rotary-type and crank-type rotavators had the same soil inversion ratio each other. The average torque and power of PTO shaft in the gear L2 and L3 were the highest in the plow-type rotavator. The load spectra of PTO shaft applying rain flow counting method and Smith-Waston-Topper equation to the measured torque showed that the modified torque amplitude was the greatest in the crank-type rotavator. This may come from the large torque fluctuation of crank-type rotavator during tillage operations. Conclusions: The three types of rotavators had different tillage and loads characteristics. The plow-type rotavator had the deepest rotavating depth, the smallest soil inversion ratio, the largest soil pulverizing ratio and required PTO power. Also, the crank-type rotavator showed a large torque fluctuation because of their unique operational mechanism. This study will help the farmers choose a suitable type of rotavator for effective tillage operations.

Characteristics and Drug Release Profiles of Multilamellar Vesicle(MLV) and Microemulsified Liposome(MEL) Entrapped 5-Fluorouracil and Its derivatives (5-Fluorouracil과 그 유도체를 봉입한 Multilamellar Vesicle(MLV)과 Microemulsified Liposome(MEL)의 특성 및 약물방출 거동)

  • Jee, Ung-Kil;Park, Mok-Soon;Lee, Gye-Won;Lyu, Yeon-Geun
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.3
    • /
    • pp.249-264
    • /
    • 1995
  • Although liposome has many advantages as a pharmaceutical dosage form, its application in the industrial field has been limited because of some problems such as preparation method, reproducibility, scale-up, stability and sterilization etc. Liposomes prepared by microemulsification method had defined size, narrow size distribution, reproducibility and high entrapment efficiency. For enhancing the stability, the dry form of liposome was recommended. These types of liposome are proliposome and freeze-dried liposome. The liposome must have some properties for preparing of freeze-dried liposome; small size $(50{\sim}200\;nm)$, narrow size distribution and cryoprotectant. In this experiment, the liposomes containing 5-Fluorouracil(5-FU) and its prodrug(pentyl-5-FU-1-acetate; PFA, hexyl-5-FU-1-acetate; HFA) were made with soybean phosphatidylcholine, cholesterol, stearylamine(SA) and dicetyl phosphate(DCP) employing hydration method or microemulsification method using $Microfluidizer^{TM}$. Both or liposome types were MLV and MEL. After preparation, freeze drying and rehydration were performed. In the process of freezing, trehalose(Tr) was added as a cryoprotectant. Their evaluation methods were as follows; entrapment efficiency, mean particle size and size distribution, dissolution test, retain of entrapment efficiency and turbidity after freeze-drying. The results are summarized as belows. The entrapment efficiency of 5-FU was dependent on total lipid concentration and cholesterol content but that of PFA and HFA was decreased when cholesterol was added. When DCP and SA were added, entrapment efficiency was decreased. As the partition coefficient of drug was increased, entrapment efficiency was increased. Under the same condition, entrapment efficiency of MEL is similar to that of MLV. The mean particle size and size distribution of MEL were smaller than those of MLV. Dissolution rates of drug from both liposome types were comparatively similar. Dissolution rates of drugs with serum and liver homogenate were faster than without these material. After preparation of liposome, free drug was removed efficiency by Dowex 50W-X4. When liposome was freeze-dried and then rehydrated in the presence of Tr, characteristics of liposome were maintained well in MEL than MLV. Tr Was used successfully as a cryoprotectant in the process of freeze drying and the optimal ratio of Tr:Lipid was 4:1(g/g).

  • PDF

Production of ${\delta}-Aminolevulinic$ Acid in Soybean Curd Wastewater by Rhodobacter capsulatus KK-10 (두부공업폐수에서 Rhodobacter capsulatus KK-10을 이용한 ${\delta}-Aminolevulinic$ Acid의 생산)

  • Cheong, Dae-Yeol;Choi, Yang-Mun;Yang, Han-Chul;Cho, Hong-Yon
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.556-560
    • /
    • 1997
  • The removal efficiency of COD and the production of ${\delta}-aminolevulinic$ acid (ALA) were concurrently investigated for both purifying the soybean curd wastewater of high BOD and utilizing the wastewater as a renewable substrate of ALA production using Rhodobacter capsulatus KK-10. Its wastewater was a favorable media for the growth of photosynthetic bacteria in terms of its environmental characteristics having COD/BOD rate of 0.98, ratio of BOD : N : P=100 : 6 : 4, BOD/N ratio of 17.2, lactic acid of 1,080 ppm. Its COD value wastewater was decreased to 94% and dry cell weight was approached to about 1.2 g/l after cultivation of the photosynthetic bacteria for 4 days. By the addition of 15 mM levulinic acid (LA) into the wastewater at the middle log phase of cell growth, the amount of ALA secreted was 55 mg/l. The ALA production was considerably increased to 114 mg/l under the cultural condition of 15 mM supplementations of glycine and succinate with LA at the same period. Furthermore the maximum ALA production of 120 mg/l and COD removal efficiency of 92% were accomplished in the soybean curd wastewater enriched with one addition of 15 mM LA and three serial additions 15 mM ALA precursors.

  • PDF

Changes of Growth and Yield of Late-planted Maize Cultivar for Double Cropping with Barley (보리이모작 만파 옥수수의 품종별 생육 및 수량변화)

  • Seo, Jong-Ho;Son, Beom-Young;Lee, Jae-Eun;Kwon, Young-Up;Jung, Gun-Ho;Back, Sung-Beom;Sung, Jang-Hoon;Kim, Wook-Han
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.3
    • /
    • pp.232-238
    • /
    • 2010
  • Maize double cropping with winter cereals is important for round-year production of forage or grain, and increase of self-sufficiency of upland grain crops such as maize and wheat. Changes of maize growth and yield for forage or grain according to late planting in June for double cropping with winter barely were investigated compared to proper planting in April for three years from 2007 to 2009. Forage and grain yields of maize planted in mid or late June decreased by 20~30% compared to proper planting in April, but total grain yields per year of double cropping increased by 30~40% compared to single cropped maize. Reduction of ear dry matter was less than that of stalk in late planting within maize plant part. Yield reduction by late planting was the least at Kwangpyeongok, which showed the highest grain yield, 850 kg $10a^{-1}$ in even though late planting in June. Meteorological condition during harvesting time of double cropped maize, which in late September (forage) and mid October (grain), were better than that of conventional maize harvesting time which in late August and mid September. It is thought that more researches for double cropped maize for higher grain production is needed in the future.

The Effect of Rain Fall Event on $CO_2$ Emission in Pinus koraiensis Plantation in Mt. Taehwa (강우 이벤트가 태화산 잣나무 식재림의 각 발생원별 $CO_2$ 발생량에 미치는 영향)

  • Suh, Sanguk;Park, Sungae;Shim, Kyuyoung;Yang, Byeonggug;Choi, Eunjung;Lee, Jaeseok;Kim, Taekyu
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.389-394
    • /
    • 2014
  • This study was conducted to find out the soil $CO_2$ emission characteristic due to rain fall pattern and intensity changes. Using Automatic Opening and Closing Chambers (AOCCs), we have measured annual soil respiration changes in Pinus koraiensis plantation at Seoul National University experimental forest in Mt. Taehwa. In addition, we have monitored heterotrophic respiration at trenching sites ($4{\times}6m$). Based on the one year data of soil respiration and heterotrophic respiration, we observed that 24% of soil respiration was derived from root respiration. During the rainy season (end of July to September), soil respiration at trenching site and trenching with rainfall interception site were measure during portable soil respiration analyzer (GMP343, Vaisala, Helsinki, Finland). Surprisingly, even after days of continuous heavy rain, soil water content did not exceed 20%. Based on this observation, we suggest that the maximum water holding capacity is about 20%, and relatively lower soil water contents during the dry season affect the vital degree of trees and soil microbe. As for soil respiration under different rain intensity, it was increased about 14.4% under 10 mm precipitation. But the high-intensity rain condition, such as more than 10 mm precipitation, caused the decrease of soil respiration up to 25.5%. Taken together, this study suggests that the pattern of soil respiration can be regulated by not only soil temperature but also due to the rain fall intensity.