• Title/Summary/Keyword: Dry Wall Method

Search Result 79, Processing Time 0.029 seconds

Earth Pressure Acting on the Diaphragm Wall of a Shaft in Cohesionless Soils (사질토지반에 설치된 원형수직구의 강성흙막이벽에 작용하는 토압)

  • Chun, Byung-Sik;Shin, Young-Wan;Kong, Jin-Young;Hwang, Yi-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.734-741
    • /
    • 2008
  • At-rest and active earth pressure in plane strain condition have been applied to the design of cylindrical retaining walls. But many researchers have indicated that the earth pressure on the cylindrical retaining walls would be smaller than in plane strain condition due to wall deformation and stress relief. In this paper, the distribution of earth pressure acting on diaphragm wall of a shaft in dry sand was predicted by using the convergence confinement method and model test was performed to verify the estimated values. Test results showed that the earth pressure acting on the diaphragm wall of a shaft was expected to be 1.1~1.5 times larger than active earth pressure of plane strain condition and 0.7~0.9 times less than at-rest earth pressure.

  • PDF

Shape Decision and Shear Experiment of High-Shear Ring Anchor for Steel-Concrete Connection (강재 접합용 고전단 링앵커의 형상 개발과 전단실험)

  • Jeon, Sang Hyeon;Kim, Mun-Kil
    • Journal of Urban Science
    • /
    • v.7 no.2
    • /
    • pp.29-36
    • /
    • 2018
  • The demand for reinforcement in accordance with remodeling, seismic retrofit, and change of use of the existing structure is increasing. Originally, shear wall new and extension method has been adopted a lot as seismic retrofit methods. Recently, dry seismic retrofit method that uses structural steel is mostly adopted in order to minimize spatiotemporal aspect and underpinning that occurs when a construct shear wall. We redesigned the form of old and new concrete joint high-shear ring anchor that was developed according to recent reinforcement method and determined construction method. Shear tests were performed on High-Shear Ring Anchor for steel-concrete connection. Comparison with 4 tests shows that the average of test-to-prediction ratios is 1.01.

A Study on the Performance Experiments of Lightweight Wall of Long-life Housing by Ceiling Infill System (천장 인필시스템에 따른 장수명주택 경량벽체의 성능실험에 관한 연구)

  • Seo, Dong-Goo;Lee, Jong-Ho;Kim, Eun-Young;Hwang, Eun-Kyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.247-248
    • /
    • 2018
  • In order to secure the variability of long-life housing, dry walls are used. The composite gypsum board panel is the most frequently used infill system for the wall, and it is an excellent construction method in terms of constructability and economic feasibility. However, there are also problems such as the destruction of Ondol pipes at the bottom floor and being unable to fix the light weight steel frame (M-bar) when a variable composite gypsum board panel is used. To solve such problems, a wall with a method of fixing only the top part without fixing the bottom floor is developed, but it is difficult to identify the durability of ceiling frame according to the tensile force of stud and the safety according to the Stiffness and impact resistance (soft body) of ceiling frame. Therefore, this study verified the effectiveness of infill system for the wall by conducting experiment on the stiffness and impact resistance of composite gypsum board panel according to the reinforcement of ceiling frame (wooden frame, double saw-toothed bracket, Cross M-bar). As a result, it was possible to secure the safety of wooden frame while the impact resistance and the Stiffness of double saw-toothed bracket and cross M-bar were not secured.

  • PDF

An experimental study on the field sound insulation performance of the light weight concrete panel using bottom ash (저회를 이용한 경량패널의 현장 차음성능에 관한 실험 연구)

  • Chung, J.Y.;Jeong, G.C.;Lee, B.K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.65-69
    • /
    • 2007
  • Recently, the method of the apartment building design is changing from wall type to moment structure. Because of this reason, dry wall systems are used plentifully. This study examines the sound insulation performance of the light weight concrete panel using bottom ash. There is the difference of airborne sound isolation between laboratory and field test. For the purpose of searching deviation, we use the prediction tool(Insul 6.0). First, we calculated the prediction data and measured the sound isolation in the wall at the lab. Then, we measured it in the field and compared them. At the base of these datum, we measured the difference.

  • PDF

Disinfection State and Effective Factors of Foodservice Facilities and Utilities of Elementary Schools in Busan -Based on the Characteristics of Dietitian, Employee and Foodservice- (부산지역 초등학교 급식시설,설비의 소독실태 및 영향요인 -영양사, 조리종사원 및 급식소 특성에 따른-)

  • Kim, Ji-Hyeon;Kim, Lee-Seon;Han, Ji-Suk
    • Journal of the Korean Dietetic Association
    • /
    • v.10 no.1
    • /
    • pp.34-46
    • /
    • 2004
  • The purpose of this study was to investigate disinfection state and effective factors of foodservice facilities and utilities of elementary schools in Busan area. Foodservice facilities and utilities investigated in this study were ceiling, wall, floor, trench, greasetrap, hood, pest and dumb waiter. The questionnaire which was administered to 196 dietitians was used as a survey method. The results were as follows. The washing method of foodservice facilities and utilities was mainly used by detergent washing-natural dry. The disinfection method of foodservice facilities and utilities was mainly sanitized by sodium hypochlorite. Dumb waiter and hood were sanitized by 70% ethyl alcohol and iodine. In washing and disinfection frequencies of foodservice facilities and utilities ceiling was twice/year, wall, hood and pest control facilities were once/week, floor, trench, greasetrap and dumb waiter were everyday, respectively. Floor, trench, greasetrap and dumb waiter were disinfected properly, whereas ceiling, wall, hood and pest were not disinfected properly. The washing method was related to dietitian's marital status and education. The disinfection state was related to dietitian's age and career, having of sanitation check list. The disinfection method was also affected dietitian's marital status, number of employee, duration of foodservice, number of total serving and having of sanitation check list. Therefore based on the results of this study, it should be given to the microbiological study on disinfection of facilities and utilities such as ceiling, wall, floor, trench, greasetrap, hood, pest and dumb waiter and the dietitian and employee's sanitation training also should be conducted continuously.

  • PDF

Static and dynamic analytical and experimental analysis of 3D reinforced concrete panels

  • Numayr, K.;Haddad, R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.399-406
    • /
    • 2009
  • A three-dimensional panel system, which was offered as a new method for construction in Jordan using relatively high strength modular panels for walls and ceilings, is investigated in this paper. The panel consists of two steel meshes on both sides of an expanded polystyrene core and connected together with a truss wire to provide a 3D system. The top face of the ceiling panel was pored with regular concrete mix, while the bottom face and both faces of the wall panels were cast by shotcreting (dry process). To investigate the structural performance of this system, an extensive experimental testing program for ceiling and wall panels subjected to static and dynamic loadings was conducted. The load-deflection curves were obtained for beam and shear wall elements and wall elements under transverse and axial loads, respectively. Static and dynamic analyses were conducted, and the performance of the proposed structural system was evaluated and compared with a typical three dimensional reinforced concrete frame system for buildings of the same floor areas and number of floors. Compressive strength capacity of a ceiling panel is determined for gravity loads, while flexural capacity is determined under the effect of wind and seismic loading. It was found that, the strength and serviceability requirements could be easily satisfied for buildings constructed using the three-dimensional panel system. The 3D panel system is superior to that of conventional frame system in its dynamic performance, due to its high stiffness to mass ratio.

Centrifuge Simulation of Wave Propagation and Isolation Method (환경진동의 지반내 전파특성과 차단에 관한 원심모형실험)

  • Lee, Kang-Il;Kusakabe, O.;Kim, Chan-Kee;Kim, Tae-Hoon;Sul, Jin-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.738-745
    • /
    • 2004
  • There are a number of ways to reduce the ground vibrations, one of which is by installing underground walls. Model tests for ground vibration have been conducted in recent years, but limited attention has been paid to underground wall which can reduce high vibrations. Up to date, only barriers have been actually installed in dry sand because of many unknown factors subsisting on the behavior of the ground. The characteristics of vibration sources, ground conditions and wall barriers have not been well understood yet, therefore centrifugal modeling was adopted to examine all these characteristics. This paper describes a ball dropping system, which can generate a pulse wave propagation through soil mass, and the test results show the effectiveness of underground wall barrier in reducing mechanical vibration.

  • PDF

A Basic Study on Required Performance and Development Direction of Fire Resistance Wall on High-rise Building (초고층 건축물용 내화벽체 요구성능 및 개발방향 설정을 위한 기초연구)

  • Kim, Dae-Hoi;Park, Soo-Young
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.1-7
    • /
    • 2011
  • Recently the interest in disaster prevention on super tall buildings is increasing. Especially in fire, against increasing of evacuation time due to high-rise, It is being tried to minimize the fire spread in building. Fire compartments using the fire-resistant wall and door, typical method to control the fire spread in buildings, delay the fire spread to other compartments and consequently evacuation time increases. But the existing provisions adjure only 2-hour fire resistance with maximum limit regardless of the super tall buildings, so this is a obstacle for research and development of the fire resistance wall in super tall buildings. In this study, we reviewed the fire resistance ratings of the wall, and presented the development directions for the fire resistance wall in super tall buildings considering fire resistance, construction and application of the wall.

Development of Hybrid Panel with C-shaped Steel Beam at Top and Bottom of Precast Concrete Wall (프리캐스트 콘크리트 벽체의 상하부에 C형강 보가 결합된 복합 패널의 개발)

  • Lee, Sang Sup;Park, Keum Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.435-442
    • /
    • 2017
  • A lateral load resisting system is a necessary structural element for the mid- to high-rise modular buildings and concrete cores are known as the most typical lateral load resisting systems in 10- to 20-story modular buildings. It is difficult to construct a concrete core simultaneously with the installation and finishing work of modular units because concrete placed using wet methods might contaminate or destroy the modular unit. Therefore, we have developed a hybrid PC (precast concrete) panel construction method that can construct a concrete core together with the installation of modular units. The hybrid PC panel is a load-bearing element in which a pair of C-shaped beams are combined at the top and bottom of a concrete wall. Concrete cores can be constructed by dry method to connect the hybrid PC panels with bolts. In this study, the details and connection of hybrid PC panels are improved to have the lateral performance comparable to reinforced concrete structural walls and are verified through FE analysis.

A study for the performance evaluation of concrete block assembly wall without using mortar (무모르타르로 건식조립된 콘크리트블록 벽체의 성능평가 연구)

  • Lee, Joong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.203-210
    • /
    • 2019
  • A recent earthquake on the Korean Peninsula caused much damage to masonry buildings, and research on performance evaluation has been underway. A masonry building is generally constructed using wet construction and is affected by temperature, which reduces the efficiency of the construction. In this study, we propose a dry construction technique for assembling concrete blocks without using mortar and evaluated its performance through experimental and analytical research. To evaluate the performance, experiments were carried out for the prismatic compressive strength, direct terminal strength, and diagonal tensile strength of the dry construction wall. The adequacy of the cross section shape was also reviewed through FEM analysis. The results show that the compressive strength and diagonal tensile strength could exert a certain intensity or higher. Furthermore, the H-type module of a key block acted as a shear key for the entire concrete block, which resulted in excellent shear strength performance. In addition, the shape and thickness of the main block have a major effect on the strength performance of each block. Therefore, an optimal shape and the proposed dry construction method could be applied to replace the wet method by studying the construction or seismic performance of the proposed method.