• Title/Summary/Keyword: Dry Shrinkage

Search Result 220, Processing Time 0.029 seconds

The Physical Properties of Non-Circular Shaper(+Type) DTY Yarn (이형단면(+Type) DTY사의 물성변화)

  • Park, Myung-Soo
    • Fashion & Textile Research Journal
    • /
    • v.13 no.1
    • /
    • pp.130-134
    • /
    • 2011
  • In the study, the physical properties of the raw sample, non-circular(+ type) DTY yarn(50d level) with absorption and quick-dry function, were examined before and after being twisted(1000T/M). The results are as follows: The shrinkage of non-cricular(+type) DTY yarn(50d/36f) at $180^{\circ}$ was about 6-7% with twisted samples, but the samples without twisting went 8 to 10%. The elongation of the non-twisted and twisted samples at $180^{\circ}$ and 30-minute treatment time reached 50% and 40%, respectively. The tenacity of non-cricular(+type) DTY yarn(50d/36f) was affected less by treatment temperature in the twisted condition.

Drying Shrinkage and Carbonation of High Strength Lightweight Self-Compacting Concrete (고강도 경량 자기충전콘크리트의 건조수축 및 중성화 특성)

  • Choi, Wook;Choi, Yun-Wang;Kim, Yong-Jic;Kang, Hyun-Jin;Cho, Sun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.77-80
    • /
    • 2005
  • Lightweight concrete is known for its advantage of reducing the self-weight of the structures, reducing the areas of sectional members as well as making the construction convenient. Thus the construction cost can be saved when applied to structures such as long-span bridge and high rise buildings. However, the lightweight concrete requires specific mix design method that is quite different from the typical concrete, since using the typical mix method would give rise the material segregation as well as lower the strength by the reduced weight of the aggregate. In order to avoid such problems, it is recommended to apply the mix design method of self-compacting concrete for the lightweight concrete. Experimental tests were performed as such compressive strength, dry shrinkage and carbonation of high strength lightweight self-compacting concrete.

  • PDF

A Study on Heat Transfer in Sand Molds (사형(砂型)의 열전달(熱傳達)에 관(關)한 연구(硏究))

  • Lee, Jong-Nam;Kim, Kwang-Bea
    • Journal of Korea Foundry Society
    • /
    • v.2 no.1
    • /
    • pp.2-11
    • /
    • 1982
  • In order to investigate the relationship between the thermal characteristics of the various molds as green sand mold, dry sand mold, $CO_2$ mold and shell mold, and the solidification characteristics of molten metal, the thermal analysis of rarious molds and melt were performed. The structure of Al-Castings was a/so observed. Results obtained in this experiment were as follows : 1) The heating rate of the molds was increased in the order of green sand mold, $CO_2$ mold, dry sand mold and shell mold, On the other hand the solidification time of the melts was shortened in the order of dry sand mold castings, $CO_2$ mold castings, green sand mold castings and shell mold castings. 2) The arrest temperature period in the heating curve of the green sand mold was resulted from the eraporation of moisture contained in mold, which was transfered to the outer side of the mold. 3) The temperature fluctuation of the melt in the shell mold was considered to be resulted from the combution heat of resin contained in the mold. 4) The amounts of heat absorption of the molds were increased in the order of dry sand mold, $CO_2$ mold, green sand mold and shell mold. 5) The higher the solidification rate was, the longer was its shrinkage pipe and the finer its grain size.

  • PDF

The Quality Properties of Self-Compacting Concrete Mixed with Tailing from the Sangdong Tungsten Mine (상동광산 광미를 혼합한 자기충전 콘크리트의 품질 특성)

  • Choi, Yun-Wang;Kim, Yong-Jic;Choi, Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.777-783
    • /
    • 2006
  • This study has focused on the possibility for recycling of tailings from the Sangdong tungsten mine as powder(TA) of self-compacting concrete(SCC). The experimental tests for slump-flow, time required to reach 500 mm of slump flow(sec), time required to flow through V-funnel(sec) and filling height of U-box test(mm) were carried out in accordance with the specified by the Japanese Society of Civil Engineering(JSCE). The results of this study, slump-flow of SCC was satisfied a prescribed range. And time required to reach 500 mm of slump flow(sec) and time required to flow through V-funnel(sec) decreased with increasing replacement of TA. But filling height of U-box test(mm), replacement of TA up to 30% were satisfied a prescribed range. The mechanical properties including compressive strength, splitting tensile strength and elastic modulus were checked with the requirements specified by Korean Industrial Standards(KS). The compressive strength of SCC decreased with increasing replacement of TA, splitting tensile strength and elastic modulus were similar to those of normal concrete. The fundamental durability was reviewed through the dry shrinkage rate and accelerated carbonation tests. As the result dry shrinkage rate and accelerated carbonation depth increased with increasing replacement of TA.

An Experimental Study on the Quality Properties of the Expansive for Dry-Shrinkage Compensation of the On-Dol Floor Mortar (온돌바닥 모르터의 건조수축 보상을 위한 팽창재의 품질특성에 관한 실험연구)

  • 이종열;이웅종;정성철
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.314-320
    • /
    • 2001
  • In this paper, the properties of an expansive agent (CaO-CaS $O_4$) for dry shrinkage compensation were investigated by a series of experimental program, which might be used at On-Dol heating system as mortar type. The expansion principle of the CaO-CaS $O_4$ was mainly verified. As a result of this study, the correlation between the content of the expansive agent and the compressive strength was obtained in the form of exponential function(Y = A $e^{-x}$), showing that as the content of expansive agent increased as the expansion performance with the compressive strength increased by only a certain amount. Also, as a results of the analysis of a correlation between the expansive performance and the chemical properties which generally accompanied a part of quality management in manufacturing the expensive cement, the expansive performance was relative to only the contents of the F-CaO among chemical properties(Blaine, +44$\mu\textrm{m}$R, F-CaO, S $O_3$,L.O.I). And it was clarified that the results were relative to the second order function, showing that if the contents of the F-CaO increased the expansive performance Increased.d.

The Quality Properties of Self Consolidating Concrete Using Lightweight Aggregate (경량골재를 사용한 자기충전 콘크리트의 품질 특성)

  • Kim, Yong Jic;Choi, Yun Wang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.573-580
    • /
    • 2010
  • This paper presents the development of self-consolidating concrete (SCC) using lightweight aggregates. SCC using Lightweight aggregate properties have been evaluated in terms of flowability, segregation resistance and filling capacity of fresh concrete as per the standards of the Japanese Society of Civil Engineering (JSCE). The measurement of the mechanical properties of hardened SCC using lightweight aggregate, including compressive strength, splitting tensile strength, elastic moduli and density, as well as its dry shrinkage and carbonation properties were also carried out. The characteristics of SCC using lightweight aggregate at the fresh state showed that as the use of the lightweight aggregate, the flowability improves without exception of Mix No. 9 but the segregation resistance tends to decrease without exception of Mix No. 3, 4 and 5. The 28 days compressive strength of the SCC using lightweight aggregate was found to be 30 MPa or higher. The relationship between the compressive strength and the splitting tensile strength was found to be similar to the expression presented by CEB-FIP, and the relationship between the compressive strength and the elastic moduli was found to be similar to the expression suggested by ACI 318-08 which takes into consideration the density of concrete. The density of the SCC using lightweight aggregate decreased by up to 26% compared to that of the control SCC. Also, The dry shrinkage and carbonation depth of the SCC using lightweight aggregate increased compared to that of the control SCC.

A Study on Fabrication of Polyester Copolymers (Ⅵ) -Physical Properties of PET/PETG Copolymer Blend by the Drawing Conditions- (폴리에스테르 공중합체의 Fabrication 연구 (Ⅵ) -PET/PETG 공중합체 블렌드의 연신조건에 따른 물리적 특성-)

  • 현은재;이소화;김기영;제갈영순;장상희
    • Polymer(Korea)
    • /
    • v.26 no.3
    • /
    • pp.335-343
    • /
    • 2002
  • Blend resin (PET/PETG 70/30 blend) of poly (ethylene terephthalate) (PET) and poly (ethylene terephthalate glycol) (PETG) of weight percent 70/30 was prepared by a twin-screw extruder. Undrawn films of the blend and pure PETG were made by melt-press in hot press. Drawn films were made by capillary rheometer. Crystallinity, shrinkage, thermal, dynamic mechanical, and mechanical properties of these blends and PETG drawn films were investigated by wide angle X-ray diffractometer, dry oven, DSC thermal analyzer, and tensile tester. The crystallinity and density of these films increased with increasing draw ratio and draw rate but decreased with increasing draw temperature. The crystallinity and density of the blend films were higher than those of PETG films. The tensile strength and tensile modulus of these drawn alms increased with increasing draw ratio and draw rate but decreased with increasing draw temperature. The tensile strength and tensile modulus of blend films were higher than those of PETG films. Shrinkage of PETG md blend films decreased with draw ratio and draw rate. Shrinkage of undrawn blend film was 600% higher than that of pure PET film.

The appearance change and heat·moisture transfer properties of knitted fabric by yarn shrinkage (원사의 수축에 따른 다공성 편성물의 형태변화와 열·수분 전달특성)

  • Sang, Jeong-Seon;Park, Juhyun;Lee, Mee-Sik;Oh, Kyung Wha
    • The Research Journal of the Costume Culture
    • /
    • v.25 no.6
    • /
    • pp.880-892
    • /
    • 2017
  • In this study, the appearance change and the heat moisture transfer properties of knitted fabric by yarn shrinkage were examined to obtain useful data on the development of thermo-sensitive functional materials. Eleven types of knitted fabric were knitted using highly bulky acrylic-blended yarn. After shrinking the specimens using dry heat treatment, the appearance change and thickness were measured. An HEC simulator was adopted for measuring the heat moisture transfer properties of specimens by yarn shrinkage. When holes were arranged vertically in the mesh structure, the specimens with 2,500 and 5,000 holes showed high percent change of hole area, appearance, and thickness. When holes were diagonally arranged in the mesh structure, the percent change of hole area in the specimen with 1,250 holes was larger than the one with 2,500 holes. However, the dimensional stability of the specimen with 2,500 holes was better because of its smaller appearance and thickness change. In the tuck structure, the percent change of hole area in the specimen with 625 and 416 holes was relatively large compared with the appearance and thickness change. Furthermore, the hole size in the tuck structure was smaller than that in the mesh structure but the percent change of hole area was larger. Therefore, it was proved that the tuck structure is more suitable than the mesh structure for developing thermo-sensitive functional materials. Heat moisture transfer property test verified that the change of hole area by yarn shrinkage enabled obtaining the thermal effect due to the distinct temperature difference in the inner layer.

An Experimental Study on the Durability and Load Carrying Capacity of RC Structure Repair System Using FR-ECC (고인성 내화보수모르터(FR-ECC)를 활용한 RC 구조물 보수공법의 내구성능 및 내하력에 관한 실험적 연구)

  • Kim, Jeong Hee;Lim, Seung Chan;Kim, Jae Hwan;Kwon, Yung Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.75-86
    • /
    • 2012
  • This paper presents some research results on the shrinkage characteristics and frost resistance before and after cracking of FR-ECC(Fire Resistance-Engineered Cementitious Composite). Also, a waterstop performance and exfoliating resistance of multi-layer lining specimens using FR-ECC and flexural performance of beam member by repaired FR-ECC are estimated in this paper. Experimental results indicate that the plastic shrinkage crack and length change ratio of FR-ECC have been reduced as compared with that of the existing repair mortar, and that its crack resistance on the dry shrinkage is improved under the confining stress. As well as FR-ECC has been great in the frost resistance and its tensile properties under the cracked state have been not reduced by freezing and thawing reaction. In addition, beam member by repaired FR-ECC have been increased in the flexural properties such as initial crack moment, yeild moment, and its crack width has been controled in a stable by the frexural failure.

Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (I) Evaluation of Setting and Shrinkage Characteristics and Tensile Behavior (초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (I) 응결 및 수축 특성과 인장거동 평가)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.307-315
    • /
    • 2012
  • Recently, ultra high performance fiber reinforced concrete (UHPFRC) having over 180 MPa compressive strength and 10 MPa tensile strength has been developed in Korea. However, UHPFRC represents different material properties with normal concrete (NC) and conventional high performance concrete (HPC) such as a high early age autogenous shrinkage and a rapid dry on the surface, because it has a low water-binder ratio and high fineness admixtures without coarse aggregate. In this study, therefore, to propose suitable experimental methods and regulations, and to evaluate mechanical properties at a very early age for UHPFRC, setting, shrinkage and tensile tests were performed. From the setting test results, paraffin oil was an appropriate material to prevent drying effect on the surface, because if paraffin oil is applied on the surface, it can efficiently prevent the drying effect and does not disturb or catalyze the hydration of cement. From the ring-test results, it was defined that the shrinkage stress is generated at the time when the graph tendency of temperature and strain of inner steel ring is changed. By comparing with setting test result, the shrinkage stress was firstly occurred as the penetration resistance of 1.5 MPa was obtained, and it was about 0.6 and 2.1 hour faster than those of initial and final sets. So, the starting time of autogenous shrinkage measurement (time-zero) of UHPFRC was determined when the penetration resistance of 1.5 MPa was obtained. Finally, the tensile strength and elastic modulus of UHPFRC were measured from near initial setting time by using a very early age tensile test apparatus, and the prediction models for tensile strength and elastic modulus were proposed.