• Title/Summary/Keyword: Drug-delivery

Search Result 1,130, Processing Time 0.039 seconds

Synthesis and Characterization of the Tumor Targeting Mitoxantrone-Insulin Conjugate

  • Liu, Wen-Sheng;Yuan-Huang;Zhang, Zhi-Rong
    • Archives of Pharmacal Research
    • /
    • v.26 no.11
    • /
    • pp.892-897
    • /
    • 2003
  • Anticancer drugs have serious side effects arising from their poor malignant cells selectivity, Since insulin receptors highly express on the cytomembrane of some kind of tumor cells, using insulin as the vector was expected to reduce serious side effects of the drugs. The objective of this study was to evaluate the tumor targeting effect of the newly synthesized mitoxantrone-insulin conjugate (MIT-INS) with the drug loading of 11.68%. In vitro stability trials showed MIT-INS were stable in buffers with different pH (2-8) at $37^{\circ}C$ within 120 h (less than 3% of free MIT released), and were also stable in mouse plasma within 48 h (less than 1 % of free MIT released). In vivo study on tumor-bearing mice showed that, compared with MIT [75.92 $\mu g \cdot$ h/g of the area under the concentration-time curve (AUC) and 86.85 h of mean residence time (MRT)], the conjugates had better tumor-targeting efficiency with enhanced tumor AUC of 126.53 1l9 h/g and MTR of 151.95 h. The conjugate had much lower toxicity to most other tissues with targeting indexes ($TI^c$) no larger than 0.3 besides good tumor targeting efficiency with $TI^c$ of 1.67. The results suggest the feasibility to promote the curative effect in ca.ncer chemotherapy by using insulin as the vector of anti-cancer drugs.

Synthesis and Characterization of Novel pH-Sensitive Hydrogels Containing Ibuprofen Pen dents for Colon-Specific Drug Delivery

  • Mahkam, Mehrdad;Poorgholy, Nahid;Vakhshouri, Laleh
    • Macromolecular Research
    • /
    • v.17 no.9
    • /
    • pp.709-713
    • /
    • 2009
  • The aim of this study was to develop novel intestinal specific drug delivery systems with pH sensitive swelling and drug release properties. The carboxyl group of ibuprofen was converted to a vinyl ester group by reacting ibuprofen and vinyl acetate as an acylating agent in the presence of catalyst. The glucose-6-acrylate-1, 2, 3, 4-tetraacetate (GATA) monomer was prepared under mild conditions. Cubane-1, 4-dicarboxylic acid (CDA) linked to two 2-hydroxyethyl methacrylate (HEMA) group was used as the crosslinking agent (CA). Methacrylic-type polymeric prodrugs were synthesized by the free radical copolymerization of methacrylic acid, vinyl ester derivative of ibuprofen (VIP) and GATA in the presence of cubane cross linking agent. The structure of VIP was characterized and confirmed by FTIR, $^1H$ NMR and $^{13}C$ NMR spectroscopy. The composition of the cross-linked three-dimensional polymers was determined by FTIR spectroscopy. The hydrolysis of drug polymer conjugates was carried out in cel-lophane membrane dialysis bags, and the in vitro release profiles were established separately in enzyme-free simulated gastric and intestinal fluids (SGF, pH 1 and SIF, pH 7.4). The detection of a hydrolysis solution by UV spectroscopy at selected intervals showed that the drug can be released by hydrolysis of the ester bond between the drug and polymer backbone at a low rate. Drug release studies showed that increasing the MAA content in the copolymer enhances the rate of hydrolysis in SIP. These results suggest that these polymeric prodrugs can be useful for the release of ibuprofen in controlled release systems.

Development of Drug-Loaded PLGA Microparticles with Different Release Patterns for Prolonged Drug Delivery

  • Choi, Yeon-Soon;Joo, Jae-Ryang;Hong, Areum;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.867-872
    • /
    • 2011
  • For the prolonged delivery and sustained release rates of low molecular weight drugs, poly(lactic-co-glycolic acid) (PLGA) microparticles containing the drug SKL-2020 have been investigated. On increasing polyvinyl alcohol (PVA) concentration (from 0.2% to 5%), the size of microparticles decreased (from $48.02{\mu}m$ to $10.63{\mu}m$) and more uniform size distribution was noticeable due to the powerful emulsifying ability of PVA. A higher drug loading (from 5% to 20%) caused a larger concentration gradient between 2 phases at the polymer precipitation step; this resulted in decreased encapsulation efficiency (from 34.19% to 25.67%) and a greater initial burst (from 61.71% to 70.05%). SKL-2020-loaded PLGA microparticles prepared with different fabrication conditions exhibited unique release patterns of SKL-2020. High PVA concentration and high drug loading led to an initial burst effect by rapid drug diffusion through the polymer matrix. Since PLGA microparticles enabled the slow release of SKL-2020 over 1 week in vitro and in vivo, more convenient and comfortable treatment could be facilitated with less frequent administration. It is feasible to design a release profile by mixing microparticles that were prepared with different fabrication conditions. By this method, the initial burst could be repressed properly and drug release rate could decrease.

Current Status of Gene Therapy as a New Drug Delivery System (신약전달기술체계인 유전자 치료의 현재까지의 개발동향)

  • Bae, Yun-Sung;Cho, Jung-Yoon;Ji, Sang-Mi;Lee, Young-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.3
    • /
    • pp.153-159
    • /
    • 2002
  • Gene therapy is fundamentally a sophisticated drug delivery technology to cure a disease by the transfer of genetic material to modify living cells. In other words, the gene is used as a therapeutic drug much like a chemical compound is employed in chemotherapy. Currently almost 600 clinical trials are underway worldwide since the first clinical trials carried out in 1990 to treat adenosine deaminase deficiency using retroviral vectors. Despite the great progress still is there no gene therapy product being approved as a new drug. This is partly due to a lack of an ideal gene delivery system that is safe and can provide stable, optimal level production of the therapeutic proteins in the cell. This review covers the current status of several different biological and physico-chemical agents that are being developed as gene delivery vehicles. Although gene therapy promises great hopes toward the cure of a broad spectrum of genetic and acquired diseases, the success of gene therapy heavily asks for the development of vector systems for safe and efficient application in humans.

Preparation and Destabilization of Target-Sensitive Liposomes (표적 민감성 리포좀의 제조와 약물 방출)

  • 양진모;양지원김종득최태부
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.428-434
    • /
    • 1995
  • Target-sensitive(TG-S) liposomes, which have the antibodies coupled on the surface of liposome and can release their entrapped contents by the binding of antibodies with the specigic target cells, were prepared and employed to study the release of calcein and the selective delivery of an anticancer agent, doxorubicin(DOX). The monoclonal antibody, Y3, used for the preparation of the TG-S liposome was one against major histocompatibility complex class 1 of mouse(MHCI, H-2Kbtype) and the target cells were EL-4 and RMA, which have the MHC1, H-2Kbtype on their membrane surfacem. The release of calcein from TG-S liposome occurred when the target cells were contacted with liposomes and it was proportionally increased with the rise of binding capacity of antibody coupled on the surface of liposome to the target cells. The experimental results of drug delivery were similar to the cases of calcein release. The viability of specific target cell, EL-4 with liposomal DOX was not so different from that with the free DOX, while for the non-specific target cell, Yacl(H-2Kf), the cell viability with Iiposomal DOX was much higher than that with free DOX. This shows the fact that the liposomal DOX can be efficiently delivered to the specific target cells, while it was not the case for the non-specific target cells. And the drug delivery was lnhibited when the free antibody of Y3 was added in the contact process between EL-4 and TG-S liposomes, which means the drug delivery occurred mainly by the destabilization of TG-S liposomes. From these results, we could conclude that the selective drug delivery to specific target cell using the TG-S liposome would be feasible.

  • PDF

Recent Advances in Intranasal Drug Delivery (경비 약물전달체계의 최근의 진보)

  • Park, Gee-Bae;Lee, Yong-Suk;Lee, Kwang-Pyo
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.2
    • /
    • pp.77-96
    • /
    • 1992
  • In recent years intranasal administration of drugs has received great attention as a convenient and efficent method of drug delivery because of its potential to improve the systemic effect of substances with a poor oral bioavailability. In addition to offering advantages such as rapid absorption, fast onset of action and avoiding the first -pass effect, it provides for delivery of drugs from very lipophilic drugs such as steroids to polar and hydrophilic drugs such as peptides and proteins. However, little is still known about the nature of various barriers existing in the nasal mucosae as well as mechanism by which these molecules are absorbed. This review article therefore intends to discuss nasal physiology, experimental methods and evaluation of absorption from the nasal cavity, factors influencing nasal absorption, mechanism of nasal absorption, approaches to improve the residence time and to obtain the sustained-release effect of intranasally administered drugs, promoters and mechanism for the enhancement of nasal absorption, Several examples for intranasal delivery of various systemically effective drugs will be reviewed and illustrated. Drug metabolism in the nasal mucosae and problems associated with intranasal administration of drugs will be also discussed.

  • PDF

Polymer-Coated Liposomes for Oral Drug Delivery (I): Stability of Polysaccharide-Coated Liposomes Against Bile Salts (고분자 코팅을 이용한 경구용 리포좀의 개발(I): 다당체로 코팅된 리포좀의 담즙산염에 대한 안정성)

  • Choi, Young-Wook;Hahn, Yang-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.3
    • /
    • pp.211-217
    • /
    • 1992
  • Stabilization of liposomes against degradation by bile salts has been investigated in order to develop a liposomal model system for oral drug delivery. Two polysaccharides, amylopectin (AP) and chitin (CT), were employed to coat both empty liposomes and bromthymol blue (BTB)-encapsulated liposomes by adsorption-coating techniques. Turbidity changes and BTB-release characteristics in pH 5.6 buffer solutions with or without bile salts, sodium cholate and sodium glycocholate, were observed to compare the differences between uncoated liposomes and polysaccharide-coated liposomes. Initial turbidities of both uncoated and polysaccharide-coated liposomes in buffer solution were kept constant within 3% range during 4 hours of experiments. But they were decreased in a different manner in bile salts-containing buffer solutions, showing 10% or less decrease for polysaccharide-coated liposomes and 25% or more decrease for uncoated liposomes. BTB release from uncoated liposomes has been greatly increased upto 90% after 4 hours in bile salts-containing buffer solution, which is a clue for breakdown of liposomal vesicles. However, polysaccharide-coated liposomes showed the controlled-release pattern which is proportional to square-root of time, followed by around 50% release for the same time period. Consequently, it is possible to conclude that these polysaccharide-coated liposomes might be an available system for oral delivery of a drug which is unstable in gut environment.

  • PDF

SMEDDS (Self-MicroEmulsifying Drug Delivery System) As An Intraurethral Prostaglandin E1 Delivery System

  • Lee, Sang-Kil;Jeon, Sang-Ok;Kang, Jae-Seon;Lee, Jae-Hwi;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.5
    • /
    • pp.291-295
    • /
    • 2007
  • Prostaglandin $E_1\;(PGE_1)$ was formulated as two self-microemulsifying drug delivery systems (SMEDDS) composed of Cremophor $EL^{(R)}$ or Cremophor $ELP^{(R)}$ as a surfactant, ethanol as a cosurfactant and Labrafac $CC^{(R)}$ as an oil to develop liquid preparation for the treatment of erectile dysfunction. In pseudo-ternary phase diagram, viscous gel area and microemulsion area were defined. In the measurement of viscosity, the viscosity of two formulations increased gradually upon the addition of water and it decreased from the water contents over 40%. With excessive water, the present systems formed a microemulsion spontaneously. From these results, rte could expect that the present liquid $PGE_1$ SMEDDS formulations might stay within the urethra in the viscous state when contacting the moisture of the urethra and can be easily eliminated by urination. In long-term stability study, we could select one formulation more stable at the shelf storage condition of $4^{\circ}C$.

ANTIMICROBIAL EFFECT OF MINOCYCLINE EMBEDDED IN POLYCAPROLACTONE ON NECROTIC CANAL (괴사치수 근관에서 항생제 국소약물송달제제의 항균효과에 관한 연구)

  • Kwon, Soo-Kyoung;Yoom, Soo-Han
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.1
    • /
    • pp.226-235
    • /
    • 1991
  • Therapeutic use of antibiotics in the pulpal disease should reduce the clinical symptoms and pathogenic microflora in the pulp. The purpose of this study was focused on local drug delivery into the root canal in endodontic therapy. Monolithic films from polycaprolactone and polyethylene glycol preparations with minocycline were prepared, and then the antimicrobial effect of these films on necrotic canal was tested. A total 17 necrotized pulp teeth were sampled before and 1 week after insertion of film into the pulp. Bacterial culture were performed with anaerobical condition and seeded in the 5 selective and non - selective media for 7 days in $37^{\circ}C$ of anaerobic chamber. Bacterial identification were performed with Gram staining, biochemical test, and API kit There was significantly decreased of anaerobic and aerobic microflora of 13 among 17 patients after therapy. Among the identified microflora, Streptococcus species, black - pigmented species and Fusobacterium species were significantly reduced 1 week after treatment with local delivery antibiotics. Furthermore, clinical symptoms included in pain and local swelling were continuousely reduced after therapy. These results suggest that local drug delivery with minocycline is effeicient to treat the endodontic involved teeth for releasing clinical symptoms and microbiological shifting.

  • PDF