DOI QR코드

DOI QR Code

Current Status of Gene Therapy as a New Drug Delivery System

신약전달기술체계인 유전자 치료의 현재까지의 개발동향

  • Bae, Yun-Sung (College of Engineering, Institute of Biotechnology, Department of Bioscience and Biotechnology, Sejong University,Microbiology Laboratory, Quality Control Department, Kyung Dong Pharm. Co. Ltd.) ;
  • Cho, Jung-Yoon (College of Engineering, Institute of Biotechnology, Department of Bioscience and Biotechnology, Sejong University) ;
  • Ji, Sang-Mi (College of Engineering, Institute of Biotechnology, Department of Bioscience and Biotechnology, Sejong University) ;
  • Lee, Young-Joo (College of Engineering, Institute of Biotechnology, Department of Bioscience and Biotechnology, Sejong University)
  • 배윤성 (세종대학교 생명공학과,경동제약) ;
  • 조정윤 (세종대학교 생명공학과) ;
  • 지상미 (세종대학교 생명공학과) ;
  • 이영주 (세종대학교 생명공학과)
  • Published : 2002.09.20

Abstract

Gene therapy is fundamentally a sophisticated drug delivery technology to cure a disease by the transfer of genetic material to modify living cells. In other words, the gene is used as a therapeutic drug much like a chemical compound is employed in chemotherapy. Currently almost 600 clinical trials are underway worldwide since the first clinical trials carried out in 1990 to treat adenosine deaminase deficiency using retroviral vectors. Despite the great progress still is there no gene therapy product being approved as a new drug. This is partly due to a lack of an ideal gene delivery system that is safe and can provide stable, optimal level production of the therapeutic proteins in the cell. This review covers the current status of several different biological and physico-chemical agents that are being developed as gene delivery vehicles. Although gene therapy promises great hopes toward the cure of a broad spectrum of genetic and acquired diseases, the success of gene therapy heavily asks for the development of vector systems for safe and efficient application in humans.

Keywords

References

  1. J. Smith, Y. Zhang and R. Niven, Toward development of a non-viral gene therapeutic, Adv. Drug Deliver. Rev., 26, 135-150 (1997) https://doi.org/10.1016/S0169-409X(97)00031-8
  2. M. Nishikawa and L. Huang, Nonviral vectors in the new millennium: Delivery barriers in gene transfer, Hum. Gene Ther., 12, 861-870 (2001) https://doi.org/10.1089/104303401750195836
  3. The Journal of Gene Medicine website (http://www.wiley. co.uk/genetherapy), Wiley
  4. R.M. Blease, K.W. Culver, A.D. Miller, C.S. Carter, T. Fleisher, M. Clerici, G. Shearer, L. Chang, Y. Chiang, P. Tolstoshev, J.J. Greenblatt, S.A. Rosenberg, H. Klein, M. Berger, C.A. Mullen, W.J. Ramsey, L. Muul, R.A. Morgan and W.F. Anderson, T lymphocyte-directed gene therapy for ADA-SCID: Initial trial results after 4 years, Science, 270, 475-480 (1995) https://doi.org/10.1126/science.270.5235.475
  5. K.R. Clark, X. Liu, J.P. McGrath and P.R. Johnson, Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses, Hum. Gene Ther., 10, 1031-1039 (1999) https://doi.org/10.1089/10430349950018427
  6. K.W. Peng, Strategies for targeting therapeutic gene delivery, Mol. Med. Today, 5, 448-458 (1999) https://doi.org/10.1016/S1357-4310(99)01579-8
  7. A. Pfeifer and I.M. Verma, Gene therapy: Promises and Problems, Annu. Rev. Genomics Hum. Genet., 2, 177-211 (2001) https://doi.org/10.1146/annurev.genom.2.1.177
  8. W.J. Choi and C.K. Kim, Recent advance and future strategy in gene delivery system, J. Kor. Pharm. Sci., 30, 1-12 (2000)
  9. I.M. Verma and N. Somia, Gene therapy-promises, problems and prospects, Nature, 389, 239-242 (1997) https://doi.org/10.1038/38410
  10. G.J. Nabel, E.G. Nabel, Z.Y. Yang, B.A. Fox, G.E. Plautz, X. Gao, L. Hung, S. Shu, D. Gordon and A.E. Chang, Direct gene transfer with DNA-liposome complexes in melanoma: Expression, biological activity, and lack of toxicity in humans, Pro. Natl. Acad. Sci. U.S.A., 90, 11307-11311 (1993) https://doi.org/10.1073/pnas.90.23.11307
  11. W.F. Anderson, Human gene therapy, Nature, 392, 25s (1998) https://doi.org/10.1038/32058
  12. C. Plank, K. Mechtler, F.C. Szoka and E. Wagner, Activation of the complement system by synthetic DNA complexes: A potential barrier for intravenous gene delivery, Hum. Gene Ther., 7, 1437-1446 (1996) https://doi.org/10.1089/hum.1996.7.12-1437
  13. D. Armentano, J. Zabner, C. Sacks, C.C. Sookdeo, M.P. Smith, J.A. George, S.C. Wadsworth, A.E. Smith, R.J. Gregory, Effect of the E4 region on the persistence of transgene expression from adenovirus vectors, J. Virol., 71, 2408-2416 (1997)
  14. T. Shenk, Adenoviruses: The viruses and their replication. in Virology (Fields, B. N., et al., eds) 2111-2148, Raven Publi- shers, Philadelphia, (1996)
  15. N. Chirmule, K. Propert, S. Magosin, Y. Qian, R. Qian and J. Wilson, Immune responses to adenovirus and adeno-associated virus in humans, Gene Ther., 6, 1574-1583 (1999) https://doi.org/10.1038/sj.gt.3300994
  16. G.L. Clayman, A.K. el-Naggar, S.M. Lippman, Y.C. Hen- derson, M. Frederick, J.A. Merritt, L.A. Zumstein, T.M. Timmons, T.J. Liu, L. Ginsberg, J.A. Roth, W.K. Hong, P. Bruso and H. Goepfert, Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma, J. Clin. Oncol., 16, 2221-2232 (1998) https://doi.org/10.1200/JCO.1998.16.6.2221
  17. J. Nemunaitis, S.G. Swisher, T. Timmons, D. Connors, M. Mack, L. Doerksen, D. Weill, J. Wait, D.D. Lawrence, B.L. Kemp, F. Fossella, B.S. Glisson, W.K. Hong, F.R. Khuri, J.M. Kurie, J.J. Lee, J.S. Lee, D.M. Nguyen, J.C. Nesbitt, R. Perez-Soler, K.M. Pisters, J.B. Putnam, W.R. Richli, D.M. Shin, G.L. Walsh, J. Merritt and J. Roth, Adenovirus-mediated p53 gene transfer in sequence with cisplatin to tumors of patients with non-small-cell lung cancer, J. Clin. Oncol., 18, 609-622 (2000) https://doi.org/10.1200/JCO.2000.18.3.609
  18. N. Muzyczka, Use of adeno-associated virus as a general transduction vector for mammalian cells, Curr. Top. Microbiol. Immunol., 158, 97-129 (1992) https://doi.org/10.1007/978-3-642-75608-5_5
  19. M.G. Kaplitt, P. Leone, R.J. Samulski, X. Xiao, D.W. Pfaff, K.L. O'Malley and M.J. During, Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain, Nature Genet., 8, 148-154 (1994) https://doi.org/10.1038/ng1094-148
  20. B. Roizman, The function of herpes simplex virus genes: a primer for genetic engineering of novel vectors, Proc. Natl. Acad. Sci. U.S.A., 93, 11307-11312 (1996) https://doi.org/10.1073/pnas.93.21.11307
  21. D.J. Fink, L.R. Sternberg, P.C. Weber, M. Mata, W.F. Goins and J.C. Glorioso, In vivo expression of $\beta$-galactosidase in hippocampal neurons by HSV-mediated gene transfer, Gene Ther., 3, 11-19 (1992) https://doi.org/10.1089/hum.1992.3.1-11
  22. J.C. Glorioso, W.F. Goins and D.J. Fink, Herpes simplex virus-based vectors, Semin. Virol., 3, 265-276 (1992)
  23. R. Zufferey, D. Nagy, R.J. Mandel, I.Naldini and D. Trono, Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo, Nat. Biotechnol., 15, 871-875 (1997) https://doi.org/10.1038/nbt0997-871
  24. T. Kafri, U. Blomer, D.A. Peterson, F.H. Gage and I.M. Verma, Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors, Nat. Genet., 17, 314-317 (1997) https://doi.org/10.1038/ng1197-314
  25. L. Naldini, U, Blomer, F.H. Gage, D, Trono and I.M. Verma, Efficient transfer, integration, and sustained long-term expre- ssion of the transgene in adult rat brains injected with a lentiviral vector, Proc. Natl. Acad. Sci. U.S.A., 93, 11382-11388 (1996) https://doi.org/10.1073/pnas.93.21.11382
  26. E. Tomlinson and A.P. Rolland, Controllable gene therapy Pharmaceutics of non-viral gene delivery systems, J. Control. Rel., 39, 357-372 (1996) https://doi.org/10.1016/0168-3659(95)00166-2
  27. J.P. Yang and L. Huang, Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio of cationic liposome to DNA, Gene Ther., 4, 950-960 (1997) https://doi.org/10.1038/sj.gt.3300485
  28. S.G. Martin amd J.C. Murray, Gene-transfer systems for human endothelial cells, Adv. Drug Deliv. Rev., 41, 223-233 (2000) https://doi.org/10.1016/S0169-409X(99)00068-X
  29. S. Li, M.A. Rizzo, S. Bhattacharya and L. Huang, Charac-terization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery, Gene Ther., 5, 930-937 (1998) https://doi.org/10.1038/sj.gt.3300683
  30. S. Li, W.C. Tseng, D.B. Stolz, S.P. Wu, S.C. Watkins and L. Huang, Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: implications for intravenous lipofection, Gene Ther., 6, 585-594 (1999) https://doi.org/10.1038/sj.gt.3300865
  31. P.C. Ross, M.L. Hensen, R. Supabphol and S.W. Hui, Multilamellar cationic liposomes are efficient vectors for in vitro gene transfer in serum, J. Liposome Res., 8, 499-520 (1998) https://doi.org/10.3109/08982109809039934
  32. D.V. Schaffer and D.A. Lauffenburger, Optimization of cell surface binding enhances efficiency and specificity of molecular conjugate gene delivery, J. Biol. Chem., 273, 28004-28009 (1998) https://doi.org/10.1074/jbc.273.43.28004
  33. P. Schoen, L. Bijl and J. Wilschut, Efficient encapsulation of plasmid DNA in anionic liposomes by a freeze/thaw-extrusion procedure, J. Liposome Res., 8, 485-497 (1998) https://doi.org/10.3109/08982109809039933
  34. G.Y. Kao, L.J. Change and T.M. Allen, Use of targeted cationic liposomes in enhanced DNA delivery to cancer cells, Cancer Gene Ther., 3, 250-256 (1996)
  35. R. Sipehia and G. Martucci, High-efficiency transformation of human endothelial cells by Apo E-mediated transfection with plasmid DNA, Biochem. Biophys. Res. Commun., 214, 206-211 (1995) https://doi.org/10.1006/bbrc.1995.2276
  36. C.R. Dass, T.L. Walker, M.A. Burton and E.E. Decruz, Enhan- ced anticancer therapy mediated by specialized liposomes, J. Pharm. Pharmacol., 49, 972-975 (1995)
  37. V.L. Truong-Le, J.T. August and K.W. Leong, Controlled gene delivery by DNA-gelatin nanospheres, Hum. Gene Ther., 9, 1709-1717 (1998) https://doi.org/10.1089/hum.1998.9.12-1709
  38. H.Q. Mao, K. Roy, V.L. Troung-Le, K.A. Janes, K.Y. Lin, Y. Wang, J.T. August and K.W. Leong, Chitosan-DNA nano- particles as gene carriers: synthesis, characterization and transfection efficiency, J. Control. Rel., 70, 399-421 (2001) https://doi.org/10.1016/S0168-3659(00)00361-8
  39. F.C. MacLaughlin, R.J. Mumper, J. Wang, J.M. Tagliaferri, I. Gill, M. Hinchcliffe and A.P. Rolland, Chitosan and depoly- merized chitosan oligomers as condensing carriers for in vivo plasmid delivery, J. Control. Rel., 56, 259-272 (1998) https://doi.org/10.1016/S0168-3659(98)00097-2
  40. P. Yotnda, D.H. Chen, W. Chiu, P.A. Piedra, A. Davis, N.S. Templeton and M.K. Brenner, Bilamellar cationic liposomes protect adenovectors from preexisting humoral immune responses, Mol. Ther., 5, 233-241 (2002) https://doi.org/10.1006/mthe.2002.0545
  41. I. Baumgartner, A. Pieczek, O. Manor, R. Blair, M. Kearney, K. Walsh and J.M. Isner, Constitutive expression of phVEGF 165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia, Circulation, 97, 1114-1123 (1998) https://doi.org/10.1161/01.CIR.97.12.1114
  42. D.W. Losordo, P.R. Vale and J.M. Isner, Gene therapy for myocardial angiogenesis, Am. Heart J., 138, S132 (1999) https://doi.org/10.1016/S0002-8703(99)70333-9
  43. M. Cavazzana-Calvo, S. Hacein-Bey, G. de Saint Basile, F. Gross, E. Yvon, P. Nusbaum, F. Selz, C. Hue, S. Certain, J.L. Casanova, P. Bousso, F.L. Deist and A. Fischer, Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease, Science, 288, 669 (2000) https://doi.org/10.1126/science.288.5466.669